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Problem setting

Batch setting
• Fixed dataset, no direct interaction with the environment.
• Access to the behavioural policy, called baseline.
• Objective: improve the baseline with high probability.
• Commonly encountered in real world applications.

Distributed systems Long trajectories
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Introduction Theory Experiments Conclusion

Contributions

Novel batch RL algorithm: SPIBB

• SPIBB comes with reliability guarantees in finite MDPs.
• SPIBB is as computationally efficient as classic RL.

Finite MDPs benchmark
• Extensive benchmark of existing algorithms.
• Empirical analysis on random MDPs and baselines.

Infinite MDPs benchmark
• Model-free SPIBB for use with function approximation.
• First deep RL algorithm reliable in the batch setting.
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Robust Markov Decision Processes

[Iyengar, 2005, Nilim and El Ghaoui, 2005]

• True environment M∗ = 〈X ,A,P∗,R∗, γ〉 is unknown.
• Maximum Likelihood Estimation (MLE) MDP built from

counts: M̂ = 〈X ,A, P̂, R̂, γ〉.
• Robust MDP set Ξ(M̂,e): M∗ ∈ Ξ(M̂,e) with probability at

least 1− δ.
• Error function e(x ,a) derived from concentration bounds.
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Existing algorithms

[Petrik et al., 2016]: SPI by robust baseline regret minimization
• Robust MDPs considers the maxmin of the value over Ξ,
→ favors over-conservative policies.
• They also consider the maxmin of the value improvement,
→ NP-hard problem.
• RaMDP hacks the reward to account for uncertainty:

R̃(x ,a)← R̂(x ,a)− κadj√
ND(x ,a)

,

→ not theoretically grounded.

[Thomas, 2015]: High-Confidence Policy Improvement

• HCPI searches for the best regularization hyperparameter
to allow safe policy improvement.
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Safe Policy Improvement with Baseline Bootstrapping

Safe Policy Improvement with Baseline Bootstrapping (SPIBB)
• Tractable approximate solution to the robust policy

improvement formulation.
• SPIBB allows policy update only with sufficient evidence.
• Sufficient evidence = state-action count that exceeds

some threshold hyperparameter N∧.

SPIBB algorithm

• Construction of the bootstrapped set:
B = {(x ,a) ∈ X ×A, ND(x ,a) < NΛ}.

• Optimization over a constrained policy set:
π�spibb = argmaxπ∈Πb

ρ(π, M̂),

Πb = {π , s.t. π(a|x) = πb(a|x) if (x ,a) ∈ B}.
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SPIBB policy iteration

Policy improvement step example
Q-value Baseline policy Bootstrapping SPIBB policy update

Q(i)
M̂
(x , a1) = 1 πb(a1|x) = 0.1 (x , a1) ∈ B

Q(i)
M̂
(x , a2) = 2 πb(a2|x) = 0.4 (x , a2) /∈ B

Q(i)
M̂
(x , a3) = 3 πb(a3|x) = 0.3 (x , a3) /∈ B

Q(i)
M̂
(x , a4) = 4 πb(a4|x) = 0.2 (x , a4) ∈ B
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Theoretical analysis

Theorem (Convergence)

Policy iteration converges to a policy π�spibb that is Πb-optimal in

the MLE MDP M̂.

Theorem (Safe policy improvement)
With high probability 1− δ:

ρ(π�spibb,M
∗)− ρ(πb,M∗) ≥ ρ(π�spibb, M̂)− ρ(πb, M̂)

− 4Vmax

1− γ

√
2

N∧
log

2|X ||A|2|X |
δ
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Model-free formulation

SPIBB algorithm
• It may be formulated in a model-free manner by setting the

targets:

y (i)
j = rj + γ

∑
a′|(x ′

j ,a
′)∈B

πb(a′|x ′j )Q(i)(x ′j ,a
′)

+ γ

 ∑
a′|(x ′

j ,a
′)/∈B

πb(a′|x ′j )

 max
a′|(x ′

j ,a
′)/∈B

Q(i)(x ′j ,a
′).

Theorem (Model-free formulation equivalence)
In finite MDPs, the model-free formulation admits a unique fixed
point that coincides with the Q-value of π�spibb.
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25-state stochastic gridworld – mean
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25-state stochastic gridworld – 1%-CVaR
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Random MDPs, random baseline – 1%-CVaR
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Gridworld – RaMDP hyperparameter sensitivity
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Gridworld – SPIBB hyperparameter sensitivity
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Helicopter domain (continuous task)
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Helicopter domain - benchmark (improved results)
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Vanilla DQN is off the chart
• mean = 0.22,
• 10%-CVaR = -1 (minimal score).
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Conclusion

SPIBB
• Assumes fixed dataset, and known behavioural policy.
• Tractable, provably reliable, sample-efficient algorithm.
• Successfully transferred to DQN architectures.

Follow-up work
• Factored SPIBB [Simão and Spaan, 2019a].
• Structure learning coupled [Simão and Spaan, 2019b].
• Soft SPIBB [Nadjahi et al., 2019].

Still to do
• Improve the pseudo-count/error estimates.
• Investigate an online SPIBB inspired algorithm.
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Thanks for your attention (POSTER #101)
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