Finding Options that Minimize Planning Time

Yuu Jinnai¹, David Abel¹, D Ellis Hershkowitz², Michael L. Littman¹, George Konidaris¹
Brown University¹, Carnegie Mellon University²

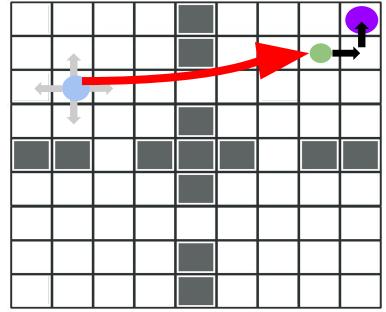
The problem of finding an optimal set of options that minimize planning time is NP-hard

Options (Sutton et al. 1999)

Primitive Actions

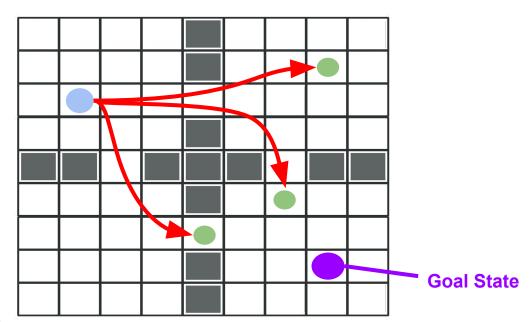
Goal State

Using Options



Research Question: Which Options are the Best?

Using Options



: Initiation State: *I*(s)

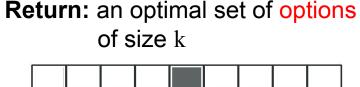
 \bigcirc : Termination State: β (s)

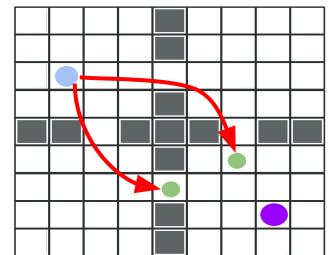
1. **Formally define** the problem of finding an optimal set of options for planning (value iteration algorithm)

Given: an MDP, a set of options, Return: an optimal set of options and an integer k of size k

- 1. Formally define the problem of finding an optimal set of options for planning
- 2. The complexity of computing an optimal set of options is NP-hard

Given: an **MDP**, a set of options, and an integer k





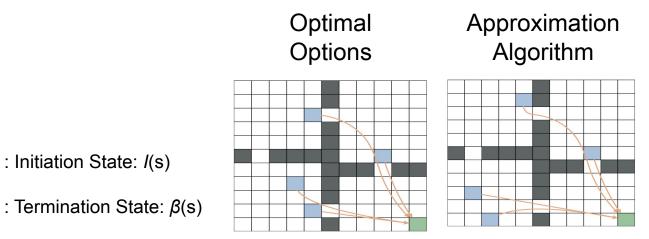
- 1. Formally define the problem of finding an optimal set of options for planning
- 2. The complexity of computing an optimal set of options is NP-hard

The problem:

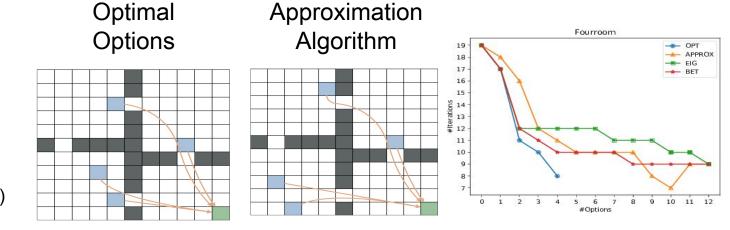
- 1. is $2^{\log^{1-\epsilon} n}$ -hard to approximate for any $\epsilon > 0$ unless $NP \subseteq DTIME(n^{\text{poly} \log n})$, where n is the input size;
- 2. is $\Omega(\log n)$ -hard to approximate even for deterministic MDPs unless P = NP;
- 3. has an O(n)-approximation algorithm;
- 4. has an $O(\log n)$ -approximation algorithm for deterministic MDPs.

: Initiation State: *I*(s)

- **Formally define** the problem of finding an optimal set of options for planning
- The complexity of computing an optimal set of options is NP-hard
- **Approximation algorithm** for computing optimal options (under conditions)



- 1. Formally define the problem of finding an optimal set of options for planning
- 2. The complexity of computing an optimal set of options is NP-hard
- 3. **Approximation algorithm** for computing optimal options (under conditions)
- 4. **Experimental evaluation** to compare with existing heuristic algorithms



: Initiation State: *I*(s)

 \blacksquare : Termination State: $oldsymbol{eta}$ (s)

Message

Finding options that minimize planning time is NP-hard

Option discovery is useful for planning if and only if we have structures, priors, or assumptions