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Deep Q-learning with target network

* The use of target network is pervasive in DQN-like algorithms.
However, little is known from the theory side.
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Temporal difference learning (TD learning)

Averaging TD learning (A-TD)

Double TD learning (D-TD)

Periodic TD learning (P-TD)

Target-based TD learning
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Classical TD learning

Online variable update

Target variable update
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Loss function of Bellman error

L(B;0";¢e):= %(r —yV(s";8") —V(s; 9))2, e:=(s,a,r,5s")



Averaging-TD learning (A-TD)

Online variable update

Target variable update

Otv1 = 0t + 4:6(0: — 6)

v’ Less aggressive target variable update by Polyak’s averaging



Double TD learning (D-TD)

Online variable update

Target variable update

o)
0, = 0L — a, Ve (L<e'; O e ) +116' - etn%)

0’ =0

v’ Symmetrize the target and online updates




Periodic TD learning (P-TD)
Subproblem: 8,,,; = argmingE,[L(6;0/; e )]
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v’ Take stochastic gradient steps L times in the inner loop




Convergence

Theorem: For A-TD and D-TD, 6; —» 6* and 6, —» 6* as t - o with probability one,
where 6" is the solution of the projected Bellman equation

®0 =II(R™ + yP™"D0O)
and Il is the projection onto the range space of ®

v’ The proof is based on the ODE and stochastic approximation

Theorem: For P-TD, an e-optimal solution, E[[|8* — 6;||p] < €, is obtained by P-TD with

at most 0 ((eiz) In G)) samples.

v'The proof is based on standard results in stochastic gradient decent methods
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v’ After certain iterations, the target-based TD algorithms tend to show
better convergence with lower variances.



Summary v'Poster: Thu Jun 13th 06:30 -- 09:00 PM @ Pacific Ballroom #38

Averaging TD learning (A-TD)

Double TD learning (D-TD)
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Periodic TD learning (P-TD)

Target-based TD learning
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