# Calibrated Model-Based Deep Reinforcement Learning

ICML 2019

Ali Malik\*, Volodymyr Kuleshov\*, Jiaming Song, Danny Nemer, Harlan Seymour, Stefano Ermon

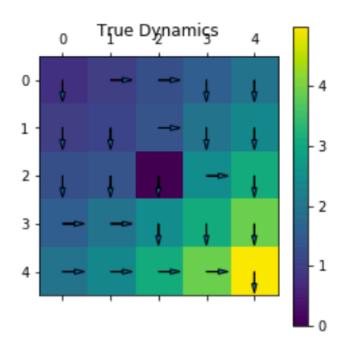


June 13, 2019



#### Overview

- Importance of predictive uncertainty
- Which uncertainties matter for MBRL?
- Calibration in MBRL
- Recalibrating MBRL
- Results



# Importance of Predictive Uncertainty

Assessing uncertainty is crucial in modern decision-making systems

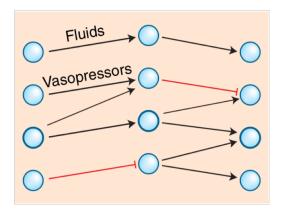
#### RL + Control



Obstacle avoidance, reward planning

Kahn et al. (2018) Chua et al. (2018)

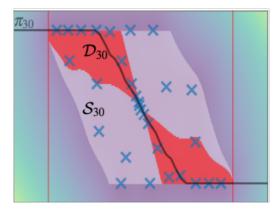
#### Medicine



Diagnosis, risk prediction, treatment recommendation.

Saria (2018) Heckerman et al. (1989)

# Safety



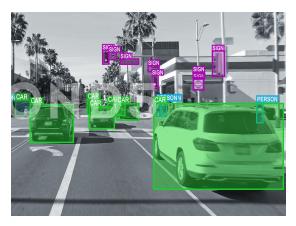
Safe exploration

Berkenkamp et al. (2017)

# Importance of Predictive Uncertainty

Assessing uncertainty is crucial in modern decision-making systems

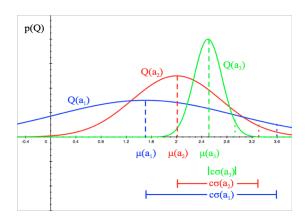
## **Autonomous Driving**



Segmentation, object detection, depth estimation.

Smith & Cheeseman (1986) McAllister et al. (2017)

# **Upper Confidence Bounds**



Balancing exploration and exploitation

Auer et al. (2002) Li et al. (2010)

# Importance of Predictive Uncertainty

Modelling uncertainty accurately is crucial

# **Key question:**

Which uncertainties are important in Model-Based Reinforcement Learning?

# What constitutes good probabilistic forecasts?

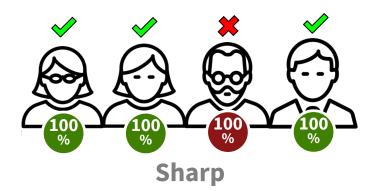
Literature on **proper scoring rules** suggest two important factors

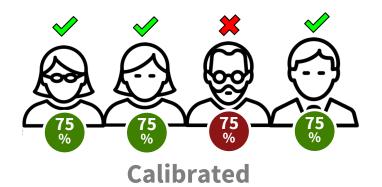
#### **Sharpness**

Predictive distributions should be focused i.e have low variance

#### **Calibration**

Uncertainty should be empirically accurate i.e. true value should fall in a p% confidence interval p% of the time





#### Calibration

Calibration measures reliability of probabilistic claims.



For things I'm **66%** sure about

I should be **correct 66%** of the time

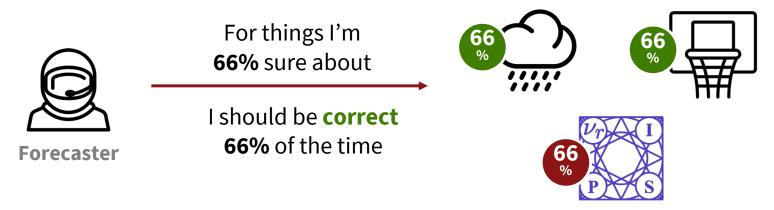




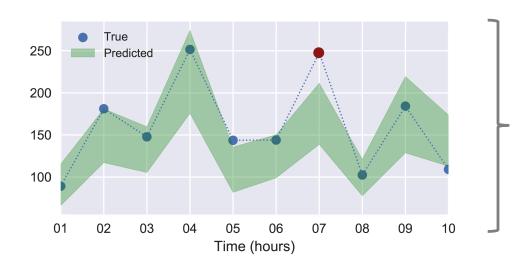


#### Calibration

Calibration measures reliability of probabilistic claims.



#### For regression:





Predicted probability for credible interval





True probability of Y falling in the interval

Stanford University

# Calibration vs Sharpness

There is an inherent trade-off between calibration and sharpness

What should we prioritise?

#### Claim:

In model-based reinforcement learning, uncertainties should be *calibrated* 

# Importance of Calibration

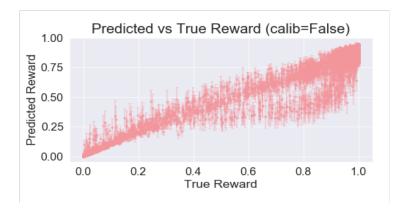
Calibration is really important in model-based reinforcement learning.

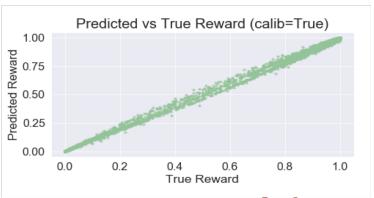
# **Planning**

Calibrated uncertainties lead to better estimates of expectation.

$$V'(s) \leftarrow \mathbb{E}_{a \sim \pi(\cdot|s)} \left[ \sum_{s' \in S} \hat{T}ig(s'|s,aig)ig(rig(s'ig) + Vig(s'ig)ig) 
ight]$$

**Theorem**: The value of policy  $\pi$  for an MDP under the true dynamics T is equal to the value of the policy under some other dynamics  $\widehat{T}$  that are calibrated with respect to the MDP.





# Importance of Calibration

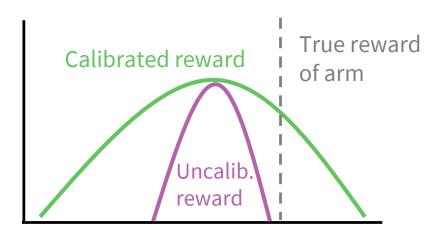
Calibration is really important in model-based reinforcement learning.

## **Exploration**

Many exploration/exploitation algorithms use Upper Confidence Bounds (UCBs) to guide choices:

$$\argmax_{a \in \mathcal{A}} \left(\mathbf{x}^{\top} \hat{\boldsymbol{\theta}}_a {+} \alpha \cdot \sqrt{\mathbf{x}^{\top} \hat{\boldsymbol{\Sigma}}_a^{-1} \mathbf{x}}\right)$$

Calibration naturally improves UCBs, resulting in better exploration.

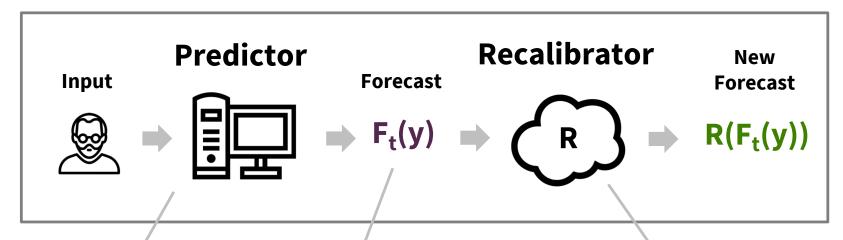


# Calibrating Model-Based RL

Uncertainties derived from modern neural networks are often uncalibrated.

We can recalibrate any forecaster using work by Kuleshov et al (2018):

#### Recalibration



Can be any model (seen as black box)

$$H: \mathcal{X} \rightarrow (\mathcal{Y} \rightarrow [0,1])$$

**Uncalibrated CDF** 

$$F: \mathcal{Y} \rightarrow [0, 1]$$

Transforms probabilities coming out of F

$$R:[0,1]\to [0,1]$$

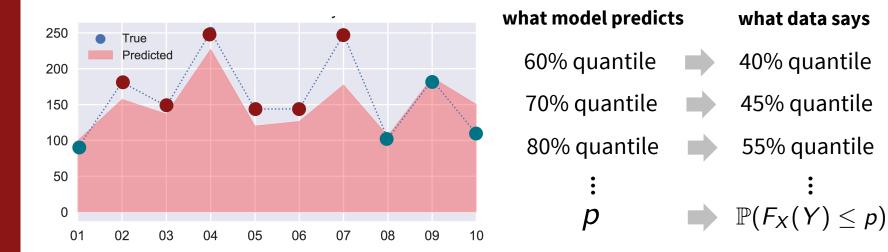
# Deriving the Ideal Recalibrator

We learn a mapping between predicted and true (empirical) probabilities.

#### Calibration

$$p = \mathbb{P}(Y \leq F_X^{-1}(p))$$

Fact: Ideal recalibrator is  $R(p) = P(Y \le F_X^{-1}(p)).$ 



# Calibrating Model-Based RL

This gives the following algorithm for MBRL:

#### **Calibrated MBRL**

Train calibrated transition model  $\widehat{T}$  from observations by repeatedly:

- **1.Explore**: Collect observations using current transition model.
- **2.LearnMode1**: Retrain transition model using new observations.
- **3.LearnCalib**: Learn recalibrator R on held-out subset of observations.
- **4.**Recalibrate: Set  $\hat{T} = R \ o \ \hat{T}$

#### **Results: Contextual Bandits**

We can apply this scheme to the LinUCB algorithm for contextual bandits:

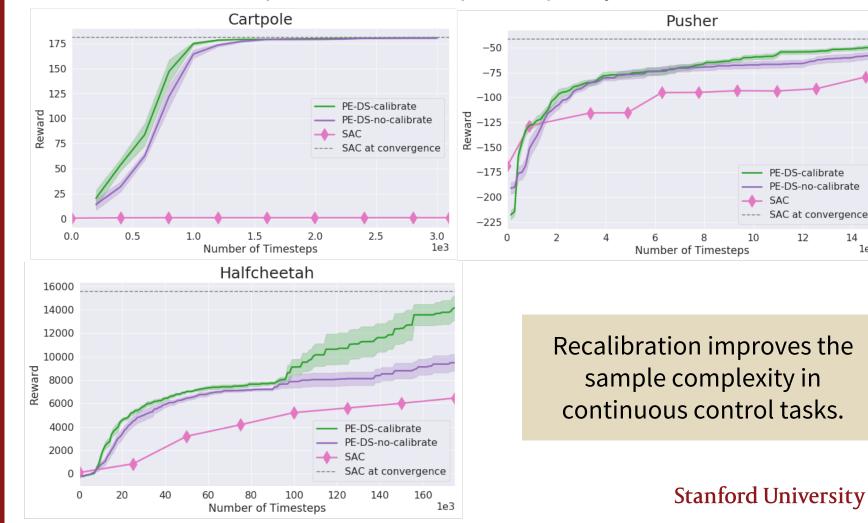
|           | LinUCB             | CalLinUCB                            | Optimal |
|-----------|--------------------|--------------------------------------|---------|
| Linear    | $1209.8 \pm 12.1$  | $1210.3 \pm 12.1$                    | 1231.8  |
| Beta      | $1176.3 \pm 11.9$  | $1174.6 \pm 12.0$                    | 1202.3  |
| Mushroom  | $1429.4 \pm 154.0$ | $\textbf{1676.1} \pm \textbf{164.1}$ | 3122.0  |
| Covertype | $558.14 \pm 3.5$   | $677.8 \pm 5.0$                      | 1200.0  |
| Adult     | $131.3 \pm 1.2$    | $198.9 \pm 4.7$                      | 1200.0  |
| Census    | $207.6 \pm 1.7$    | $ 603.7 \pm 3.8$                     | 1200.0  |

Recalibration consistently improves the exploration/exploitation balance in contextual bandits tasks.

#### Results: MuJoCo Continuous Control

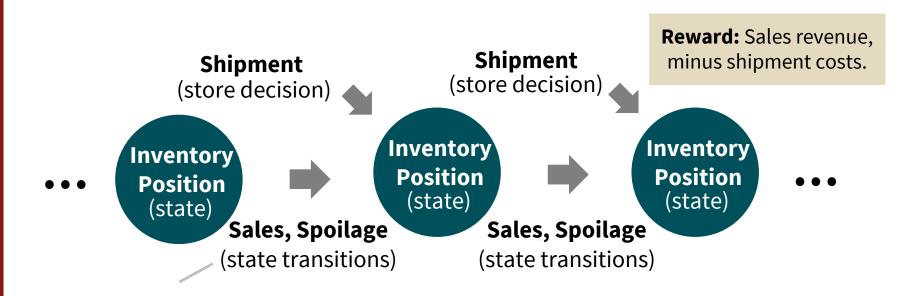
We calibrate the probabilistic ensemble model from Chua et al. 2018 and show noticeable improvement in sample complexity across different tasks:

1e3



# Results: Inventory Planning

We also calibrate a Bayesian DenseNet tasked with controlling the inventory of perishable goods in a store



| Calibrated | Uncalibrated | Heuristic |
|------------|--------------|-----------|
| -16,793    | -20,506      | -25,516   |

# Thank you!

Stop by poster #36 for more details