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Outline
● Establish a baseline approach to MARL
● Demonstrate how recent approaches improve on said baseline through 

sharing information between agents during training
● Present our attention-based approach for information sharing
● Demonstrate our approach’s improved effectiveness in terms of scalability 

and overall performance



Baseline Approach to MARL
Learning with single-agent RL technique (actor-critic) for each agent independently
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Each agent only considers its local information
Both the actor during execution, and the actor and critic during training



Centralizing Training
Addressing the downsides of the independent MARL approach

● Centralizing training = each agent’s 
critic takes other agents’ actions and 
observations into account when 
predicting their own returns

● Policies remain decentralized
● Pros:

○ Gives more information to each 
agent, improving performance

● Cons:
○ Now we need communication 

during training
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But, How to Share?

Actor

Buffer

Training

Actor...

Critic Critic

● Existing approaches [1,2] 
concatenate all information into 
one long vector
○ Can get large as many 

agents are added
○ Not all information is relevant
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Actor-Attention-Critic
Sharing information between agents using an attention mechanism
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● Agents “attend” to information 
that is important for predicting 
their returns

● Information about other agents is 
encoded into a fixed size vector
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Attention Mechanism in Detail
Sharing information between agents using an attention mechanism

● Agents exchange information 
using a query-key system

● Ultimately receive aggregated 
information from other agents 
that is most relevant to predicting 
their own returns
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Environments

● Cooperative Treasure Collection
○ Agents with different roles cooperate to collect colored “treasure” around the map
○ Challenge: rewards are shared, and agents must perform multi-agent credit assignment

● Rover-Tower
○ Blind “rovers” and stationary “towers” randomly paired and must cooperatively reach goal through communication
○ Challenge: rewards are independent per pair, so agents must learn to select relevant information

● Both tasks are easily scalable and require coordination between heterogeneous agent types
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Performance

● Our method outperforms baseline methods on two cooperative tasks
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Scalability
● Compared to the next best 

performing baseline, our method 
scales well as agents are added
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Thank you!
For more details please come to our poster:

06:30 -- 09:00 PM Pacific Ballroom


