TarMAC: Targeted Multi-Agent Communication

Abhishek Das  Théophile Gervet  Joshua Romoff

/1\.

Dhruv Batra Devi Parikh Mike Rabbat Joelle Pineau

.
o\
ot
-",'.'-“
O I
s
N
. s

S A
Mt

facebook
Artificial Intelligence Research

Georgial T MeGil .\

s



Multi-Agent Communication



Multi-Agent Communication

« Learning effective communication i1s a key ability for collaboration.



Multi-Agent Communication
* [earning effective communication is a key ability for collaboration.

» Wide-ranging applications
» Multi-player games

‘ : [1] Aiphastar

8] LiquidTLO Y 147172 335

AlphaStar, DeepMind.



Multi-Agent Communication
* [earning effective communication is a key ability for collaboration.

 Wide-ranging applications ——

©
o

+ Multi-player games A A e

5 - 4
77 NS S ' .
[ “IF

i

/ s
4
o
.

« Self-driving car networks

——
§ .'"’7

P ot
A A

\\3
' ‘ ® \\\\

®

13
‘— ‘S
N ),
\ /7
R ~ ", /
. “

\ *

.

AlphaStar, DeepMind. US Department of Transportation.



Multi-Agent Communication
* [earning effective communication is a key ability for collaboration.

« Wide-ranging applications
» Multi-player games
« Self-driving car networks

o Search-and-rescue robots

AlphaStar, DeepMind. US Department of Transportation. DARPA.



Multi-Agent Communication
* [earning effective communication is a key ability for collaboration.

« Wide-ranging applications
» Multi-player games
« Self-driving car networks
e Search-and-rescue robots

AlphaStar, DeepMind. US Department of Transportation.

AFP / Getty Images. Budapest University



Multi-Agent Communication

(t.

)
@
A

Y

Y
(.

(t..

AlphaStar, DeepMind. US Department of Transportation.

AFP / Getty Images. Budapest University



Multi-Agent Communication

* Prior work on learning multi-agent communication:

» Learning Multi-agent Communication with Backpropagation. Sukhbaatar et al.,, 2016
» [earning to Communicate with Deep Multi-Agent Reinforcement Learning. Foerster et al., 2016.

» Learning When to Communicate at Scale in Multi-Agent Cooperative and Competitive Tasks.
Singh et al,, 2019.
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t for complex collaboration strategies to emerge among agents with

‘erent roles and goals, targeted communication is important.
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Targeted Multi-Agent Communication

t for complex collaboration strategies to emerge among agents with

‘erent roles and goals, targeted communication is important.

being able to direct certain messages to specific recipients.
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Targeted Multi-Agent Communication

« But for complex collaboration strategies to emerge among agents with
different roles and goals, targeted communication is important.

 |.e. being able to direct certain messages to specific recipients.

« We introduce TarMAC, a multi-agent reinforcement learning architecture enabling
targeted, multi-round communication learnt through backpropagation.

AlphaStar, DeepMind. US Department of Transportation.
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Results: SHAPES

4 agents in a gridworld with partial observations
looking for red, red, green, blue respectively
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Results: SHAPES

30 x 30, 4 agents, find[red] 50 x 50, 4 agents, find[red|] 50 x 50, 4 agents, find[red, red, green,blue]

No communication 95.3+2.8% 83.0+3.3% 69.1+4.6%
No attention 99.7+0.8% 89.5+1.4% 82.4+2.1%
TarMAC 99.84+0.9% 89.5+1.7% 85.8+2.5%

Table 2: Success rates on 3 different settings of cooperative navigation in the SHAPES environment.
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Benefits of communication and attention
Increase with task complexity.
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Results: Traffic Junction

Easy Hard

No communication 84.9+4.3% | 74.1+3.9%
CommNet (Sukhbaatar et al., 2016)  99.7+0.1% | 78.9+3.4%
TarMAC 1-round 99.9+0.1% | 84.6+3.2%
TarMAC 2-round 99.9+0.1% | 97.1+1.6%

Table 3: Success rates on traffic junction. Our targeted 2-round
communication architecture gets a success rate of 97.14+1.6% on
the ‘hard’ variant, significantly outperforming Sukhbaatar et al.
(2016). Note that 1- and 2-round refer to the number of rounds of
communication between actions (Equation 4).

Benefits of communication and attention
Increase with task complexity.
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Results: Extension to competitive tasks — Predator-Prey
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When combined with prior approaches for competitive environments,
TarMAC leads to better sample efficiencies
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Summary

 We introduced TarMAC, a simple architecture that allows for
targeted multi-agent communication.

49



Summary

 We introduced TarMAC, a simple architecture that allows for
targeted multi-agent communication.

e Targeting is learnt via sender-receiver soft attention.

50



Summary

 We introduced TarMAC, a simple architecture that allows for
targeted multi-agent communication.

e Targeting is learnt via sender-receiver soft attention.

e Evaluation on multiple environments shows that TarMAC leads to
Intuitive communication attention and better performance.

51



Summary

We introduced TarMAC, a simple architecture that allows for
targeted multi-agent communication.

Targeting is learnt via sender-receiver soft attention.

Evaluation on multiple environments shows that TarMAC leads to
Intuitive communication attention and better performance.

For more details, come to our poster
* Pacific Ballroom #57 (06:30 PM to 09:00 PM)

52



