
PAC Identification of Many Good Arms in Stochastic
Multi-Armed Bandits

Arghya Roy Chaudhuri
under the guidance of

Prof. Shivaram Kalyanakrishnan

Indian Institute of Technology Bombay, India

1 / 8



What Is It All About?

2 / 8



What Is It All About?

2 / 8



What Is It All About?

2 / 8



What Is It All About?

3 / 8



What Is a Multi-Armed Bandit?
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Mean: Pr[Reward = 1]

To identify the best arm:
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To identify the best subset of size
m:
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We need an alternative.
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Large Bandit Instances

Difficulty for n� T :

limn→∞
n
ε2

log 1
δ =∞.

Get around:

Identifying 1 from the best
ρ-fraction is possible.

Redefine the problem to identify 1
from the best m arms.

Defining ρ = m
n , generalise the

problem.

What if we n is relatively small?
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Finite-Armed Bandit Instances

(k,m,n): To identify any distinct k arms from the best m arms in a set
of n arms.

k = 1: Any 1 arm out of
the best subset of size
m.

k = m: Best subset
identification.

k = m = 1: Best arm
identification.

Contributions:

LUCB-k-m (Fully sequential + Adaptive).

Worst case upper and lower bound.
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Infinite-Armed Bandit Instances

(k, ρ): To identify any distinct k arms from the best ρ fraction of arms.
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Thank You!
Poster: #54

Email: arghya@cse.iitb.ac.in
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