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Warm-starting contextual bandits

* Fortimestept =1,2,..T:
* Observe context x;
with associated cost ¢; = (c¢;(1), ..., c;(K))
from distribution D

* Take an action a; € {1, ...K}

* Receive cost c;(a;) € [0,1]
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Warm-starting contextual bandits: motivation

* Some labeled examples often exist in applications, e.g.
* News recommendation: editorial relevance annotations
* Healthcare: historical medical records w/ prescribed treatments

 Leveraging historical data can reduce unsafe exploration




Warm-starting contextual bandits: motivation

* Some labeled examples often exist in applications, e.g.
* News recommendation: editorial relevance annotations
* Healthcare: historical medical records w/ prescribed treatments

 Leveraging historical data can reduce unsafe exploration

Key Challenge: W may not be the same as D
 Editors fail to capture users’ preferences
* Medical record data from another population

How to utilize the warm-starting examples robustly and effectively?



Algorithm & performance guarantees

ARRoW-CB: iteratively finds the best relative weighting of warm-start
and bandit examples to rapidly learn a good policy



Algorithm & performance guarantees

ARRoW-CB: iteratively finds the best relative weighting of warm-start
and bandit examples to rapidly learn a good policy

* Theorem (informal):

Compared to algorithms that ignore S, * the regret of ARRoOW-CB is

- never much worse (robustness)

- much smaller, if W and D are close enough, and |S| is large enough

*S~W is the warm start data
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