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Objective and main idea

Euclidean space Space of probability distributions

Gradient descent Wasserstein gradient flow

Accelerated methods ?

Objective: Construct accelerated flows for probability distribution

Approach:

(Wibisono, et. al. 2017) proposed a variational formulation to construct accelerated
flows on Euclidean space

Our approach is to extend the variational formulation for probability distributions
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Variational formulation for Euclidean space

vector variables Rd probability distribution P2(Rd)

Objective funct. f(x) ?

Gradient flow ẋt = −∇f(xt) ?

Lagrangian t3(
1

2
|ẋt|2 − f(xt)) ?

Accelerated flow ẍt = −
3

t
ẋt −∇f(xt) ?

Accelerated flow is obtained by minimizing the action integral of the Lagrangian
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Wasserstein gradient flow

vector variables Rd probability distribution P2(Rd)

Objective funct. f(x) F(ρ) = D(ρ‖ρ∞)

Gradient flow ẋt = −∇f(xt) dXt = −∇f(Xt) dt+
√
2 dBt

Lagrangian t3(
1

2
|ut|2 − f(xt)) ?

Accelerated flow ẍt = −
3

t
ẋt −∇f(xt) ?

The Wasserstein gradient flow with respect to relative entropy is the Fokker-Planck
equation (Jordan, et. al. 1998)

The Fokker-Planck equation is realized with the Langevin sde

The goal is to obtain accelerated forms of the sde
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Summary

vector variables Rd probability distribution P2(Rd)

Objective funct. f(x) F(ρ) = D(ρ‖ρ∞)

Gradient flow ẋt = −∇f(xt) dXt = −∇f(Xt) dt+
√
2 dBt

Lagrangian t3(
1

2
|ẋt|2 − f(xt)) E[t3(

1

2
|Ẋt|2 − f(Xt)− log(ρ(Xt)))]

Accelerated flow ẍt = −
3

t
ẋt −∇f(xt) Ẍt = −

3

t
Ẋt −∇f(Xt)−∇ log(ρt(Xt))

The accelerated flow involves a mean-field term ∇ log ρt(Xt) which depends on the
distribution of Xt

The numerical algorithm involves a system of interacting particles

The mean-field term is approximated in terms of particles
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Ẋt −∇f(Xt)−∇ log(ρt(Xt))

The accelerated flow involves a mean-field term ∇ log ρt(Xt) which depends on the
distribution of Xt

The numerical algorithm involves a system of interacting particles

The mean-field term is approximated in terms of particles

Accelerated gradient flow for prob. dist. Amirhossein Taghvaei 4 / 6 Amirhossein Taghvaei



Summary

vector variables Rd probability distribution P2(Rd)

Objective funct. f(x) F(ρ) = D(ρ‖ρ∞)
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Numerical example
Gaussian

The target distribution is Gaussian

100 101

t

10 6

10 4

10 2

100

102

KL( t| )
O(1

t2 )
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Numerical example
non-Gaussian

The target distribution is mixture of two Gaussians

t=t0 t=t1 t=t2

t0 t1 t2

100 101

t

10 3

10 2

10 1

100

KL( t| )
O(1

t2 )

Thanks for your attention. For more details come to see poster #206
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