Accelerated Flow for Probability Distributions

Thirty-sixth International Conference on Machine Learning, Long Beach, 2019

Amirhossein Taghvaei Joint work with P. G. Mehta

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

June 13, 2019

Objective and main idea

Euclidean space	Space of probability distributions
Gradient descent	Wasserstein gradient flow
Accelerated methods	?

Objective: Construct accelerated flows for probability distribution

Approach:

- (Wibisono, et. al. 2017) proposed a variational formulation to construct accelerated flows on Euclidean space
- Our approach is to extend the variational formulation for probability distributions

Objective and main idea

Euclidean space	Space of probability distributions
Gradient descent	Wasserstein gradient flow
Accelerated methods	?

Objective: Construct accelerated flows for probability distribution

Approach:

- (Wibisono, et. al. 2017) proposed a variational formulation to construct accelerated flows on Euclidean space
- Our approach is to extend the variational formulation for probability distributions

Objective and main idea

Euclidean space	Space of probability distributions
Gradient descent	Wasserstein gradient flow
Accelerated methods	?

Objective: Construct accelerated flows for probability distribution

Approach:

- (Wibisono, et. al. 2017) proposed a variational formulation to construct accelerated flows on Euclidean space
- Our approach is to extend the variational formulation for probability distributions

Variational formulation for Euclidean space

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	?
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$?
Lagrangian	$t^{3}(\frac{1}{2} \dot{x}_{t} ^{2} - f(x_{t}))$?
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$?

Accelerated flow is obtained by minimizing the action integral of the Lagrangian

Wasserstein gradient flow

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(ho) = D(ho \ ho_\infty)$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} u_{t} ^{2} - f(x_{t}))$?
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$?

- The Wasserstein gradient flow with respect to relative entropy is the Fokker-Planck equation (Jordan, et. al. 1998)
- The Fokker-Planck equation is realized with the Langevin sde
- The goal is to obtain accelerated forms of the sde

Wasserstein gradient flow

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(ho) = D(ho \ ho_\infty)$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} u_{t} ^{2} - f(x_{t}))$?
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$?

- The Wasserstein gradient flow with respect to relative entropy is the Fokker-Planck equation (Jordan, et. al. 1998)
- The Fokker-Planck equation is realized with the Langevin sde
- The goal is to obtain accelerated forms of the sde

Wasserstein gradient flow

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(\rho) = D(\rho \ \rho_{\infty})$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} u_{t} ^{2} - f(x_{t}))$?
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$?

- The Wasserstein gradient flow with respect to relative entropy is the Fokker-Planck equation (Jordan, et. al. 1998)
- The Fokker-Planck equation is realized with the Langevin sde
- The goal is to obtain accelerated forms of the sde

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(ho) = D(ho \ ho_{\infty})$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} \dot{x}_{t} ^{2} - f(x_{t}))$	$E[t^{3}(\frac{1}{2} \dot{X}_{t} ^{2} - f(X_{t}) - \log(\rho(X_{t})))]$
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$	$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \nabla \log(\rho_t(X_t))$

- The accelerated flow involves a mean-field term $\nabla \log \rho_t(X_t)$ which depends on the distribution of X_t
- The numerical algorithm involves a system of interacting particle
- The mean-field term is approximated in terms of particles

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(\rho) = D(\rho \ \rho_{\infty})$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} \dot{x}_{t} ^{2} - f(x_{t}))$	$E[t^{3}(\frac{1}{2} \dot{X}_{t} ^{2} - f(X_{t}) - \log(\rho(X_{t})))]$
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$	$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \nabla \log(\rho_t(X_t))$

- The accelerated flow involves a mean-field term $\nabla \log \rho_t(X_t)$ which depends on the distribution of X_t
- The numerical algorithm involves a system of interacting particle
- The mean-field term is approximated in terms of particles

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(\rho) = D(\rho \ \rho_{\infty})$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} \dot{x}_{t} ^{2} - f(x_{t}))$	$E[t^{3}(\frac{1}{2} \dot{X}_{t} ^{2} - f(X_{t}) - \log(\rho(X_{t})))]$
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$	$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \nabla \log(\rho_t(X_t))$

- The accelerated flow involves a mean-field term $\nabla \log \rho_t(X_t)$ which depends on the distribution of X_t
- The numerical algorithm involves a system of interacting particles
- The mean-field term is approximated in terms of particles

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(ho) = D(ho \ ho_{\infty})$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} \dot{x}_{t} ^{2} - f(x_{t}))$	$E[t^{3}(\frac{1}{2} \dot{X}_{t} ^{2} - f(X_{t}) - \log(\rho(X_{t})))]$
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$	$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \nabla \log(\rho_t(X_t))$

- The accelerated flow involves a mean-field term $\nabla \log \rho_t(X_t)$ which depends on the distribution of X_t
- The numerical algorithm involves a system of interacting particles
- The mean-field term is approximated in terms of particles

Numerical example Gaussian

■ The target distribution is Gaussian

Numerical example non-Gaussian

■ The target distribution is mixture of two Gaussians

Thanks for your attention. For more details come to see poster #206

■ The target distribution is mixture of two Gaussians

Thanks for your attention. For more details come to see poster #206