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Goal

Estimation of yu = E,, ) [f (x)] is ubiquitous in machine learning problem:s.
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Goal

Estimation of u = [,y [f (x)] is ubiquitous in machine learning problems.

Monte Carlo Estimation: u = %(f(xl) + f(x,)) X1, Xy = p(x)

@ MC is unbiased: E E (f (xq) + f(xz))] = U

@ High variance
Estimation can be far off with small sample size



Goal

Estimation of yu = E,, ) [f (x)] is ubiquitous in machine learning problem:s.

Monte Carlo Estimation: u = %(f(xl) + f(x;)) X1, X = p(x)

Trivial solution: Better solution:
use more samples! better sampling strategy than i.i.d.



Antithetic Sampling

Don’t sample i.i.d. x1,x, ~ p(x1)p(x,)
Sample correlated distribution x4, x5 ~ q (x4, x3)

Unbiased if Goal: minimize

q(x1) = p(xq)
q(x;) = p(x3) Varg x, ) [f(xl) erf(xz)]




Example: Negative Sampling

q (x4, x5) defined by Ny X,
oS
1.Sample x; ~ p(x). o -— %y
. < Marginal
2.Pick x, = —x4. on X,
lMarginaI
on X4
X1

p(x1)



Example: Negative Sampling

q (x4, x5) defined by ﬁest Case Example \

1.Sample x; ~ p(x).
2. PiCk xz — _xl ) —ﬂi'.':' -30 0 20 !:l é "-‘I:l 30 40
fa)+F0s) _
5 = -2000
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Ep(x) [f(x)] =0 f — X3

f(x1)+f(x2)] _ O
- =

VarQ(xsz) [
no error for a sample size of 2! /




Example: Negative Sampling

q(xl, xz) defined by mrst Case Example \

1.Sample x; ~ p(x).

2.Pick x, = —x4.

f(x1) = f(xy), x, redundant

f(x1)+f(x2)
\ Varq(xl’xz)[ a . =2 ] doubles!J




General Result

Question: is there an antithetic distribution that always works better than i.i.d.?

@ Yes: sampling without replacement is always a tiny bit better.

No Free Lunch (Theorem 1): no antithetic distribution work
better than sampling without replacement for every function f.



Valid Distribution Set

Qunbiased: Set of distributions q(x¢, x,)
that satisfy q(x;) = p(x1), q(x2) = p(x3)



Variance of example functions

Pick this distribution

xz .
Low Variance

High Variance

Qunbiased : Set of distributions q(x¢, x,)
that satisfy q(x1) = p(x1), q(x2) = p(x;)




Variance of example functions

X2

Pick this distribution

Low Variance

High Variance
300 O |~
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v 00 Qunbiased: Set of distributions q (x4, x5)
f, = e* + 2xsin(x) that satisfy q(x1) = p(x1), q(x;) = p(x3)

High Variance




Pick Good Distribution for a Class of Functions

Tz ~7:={f1:f2»---}

:

Low Variance /

High Vari
on average for F Igh Variance

S on average for F
Qunbiased : Set of distributions q(x¢, x,)

that satisfy q(x1) = p(x1), q(x2) = p(x3)



Pick Good Distribution for a class of functions

X2
I -
O
Low Variance / High Variance
on average
on average ——
Qunbiasea: Set of distributions q(x4, x,)
that satisfy g(x;) = p(x,), q(x;) = p(xy)
Training Generalization

Pick a good g for several functions Low variance for similar functions



Training Objective

min

f(x1)

flxz)

*f~f VarCI(xsz)

2

s.t. q(x1,x2) € Qunpiased



Practical Training Algorithm

We design
1. Parameterization for Q. ,piaseq Via copulas.

2. A surrogate objective to optimize the variance.



Variance

Wasserstein GAN w/ gradient penalty

Variance of Gradient Inception Score Inception Score
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Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." Advances in Neural Information Processing Systems. 2017.




Probability of Improvement

Importance Weighted Autoencoder

Our method VS negative sampling Our method VS i.i.d. sampling
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Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov. "Importance weighted autoencoders." arXiv preprint arXiv:1509.00519 (2015).



Conclusion

* Define a general family of (parameterized) unbiased antithetic distribution.

* Propose an optimization framework to learn the antithetic distribution
based on the task at hand.

 Sampling from the resulting joint distribution reduces variance at negligible
computation cost.
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Welcome to our poster session for further discussions!
Thursday 6:30-9pm @ Pacific Ballroom #205
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