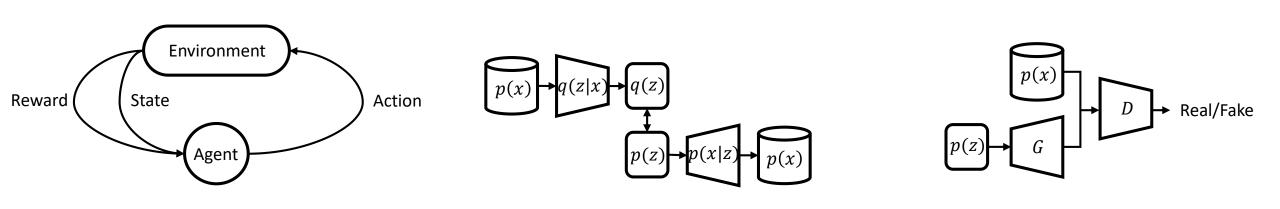


Adaptive Antithetic Sampling for Variance Reduction

Hongyu Ren*, Shengjia Zhao*, Stefano Ermon

Goal

Estimation of $\mu = \mathbb{E}_{p(x)}[f(x)]$ is ubiquitous in machine learning problems.



$$\mathbb{E}_{p(\tau)} \left[\sum_t r(s_t, a_t) \right]$$
 Reinforcement Learning

$$\mathbb{E}_{p(x)}\mathbb{E}_{q(z|x)}\left[\log\frac{p(x,z)}{q(z|x)}\right]$$
Variational Autoencoder

$$\mathbb{E}_{p(x)}[\log D(x)] + \mathbb{E}_{p(z)}\left[\log\left(1 - D(G(z))\right)\right]$$
Generative Adversarial Nets

Goal

Estimation of $\mu = \mathbb{E}_{p(x)}[f(x)]$ is ubiquitous in machine learning problems.

Monte Carlo Estimation:
$$\mu \approx \frac{1}{2}(f(x_1) + f(x_2))$$

$$x_1, x_2 \stackrel{\text{i.i.d.}}{\sim} p(x)$$

MC is unbiased:
$$\mathbb{E}\left[\frac{1}{2}(f(x_1) + f(x_2))\right] = \mu$$

High variance Estimation can be far off with small sample size

Goal

Estimation of $\mu = \mathbb{E}_{p(x)}[f(x)]$ is ubiquitous in machine learning problems.

Monte Carlo Estimation:
$$\mu \approx \frac{1}{2}(f(x_1) + f(x_2))$$

$$x_1, x_2 \stackrel{\text{i.i.d.}}{\sim} p(x)$$

Trivial solution: use more samples!

Better solution: better sampling strategy than i.i.d.

Antithetic Sampling

Don't sample i.i.d. $x_1, x_2 \sim p(x_1)p(x_2)$ Sample correlated distribution $x_1, x_2 \sim q(x_1, x_2)$

Unbiased if

$$q(x_1) = p(x_1)$$
$$q(x_2) = p(x_2)$$

Goal: minimize

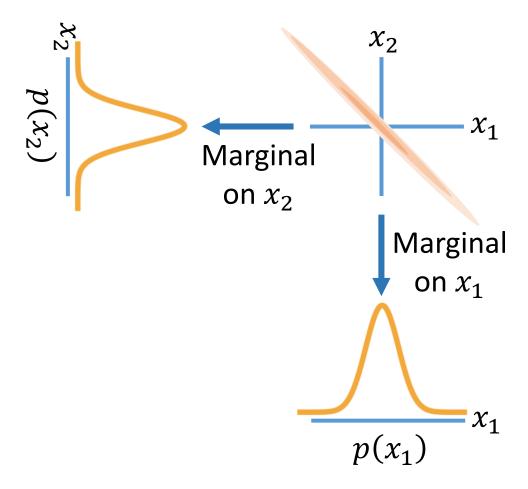
$$\operatorname{Var}_{q(x_1, x_2)} \left[\frac{f(x_1) + f(x_2)}{2} \right]$$

Example: Negative Sampling

 $q(x_1, x_2)$ defined by

1. Sample $x_1 \sim p(x)$.

2. Pick $x_2 = -x_1$.

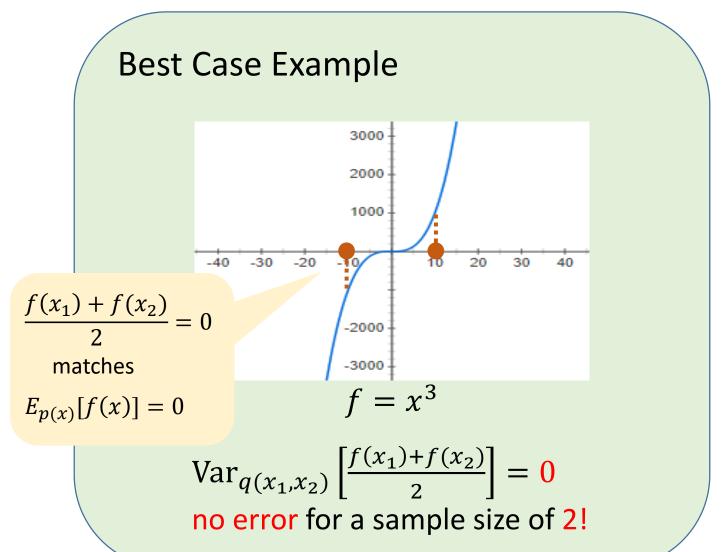


Example: Negative Sampling

 $q(x_1, x_2)$ defined by

1. Sample $x_1 \sim p(x)$.

2. Pick $x_2 = -x_1$.

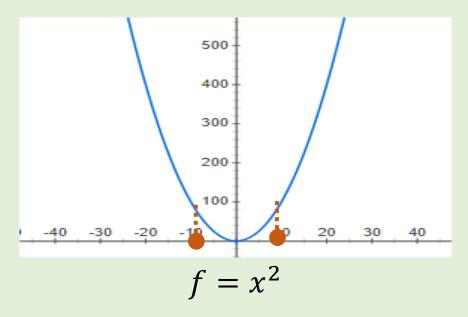


Example: Negative Sampling

$$q(x_1, x_2)$$
 defined by

- 1. Sample $x_1 \sim p(x)$.
- 2. Pick $x_2 = -x_1$.

Worst Case Example



$$f(x_1) = f(x_2), x_2 \text{ redundant}$$

$$\operatorname{Var}_{q(x_1,x_2)}\left[\frac{f(x_1)+f(x_2)}{2}\right]$$
 doubles!

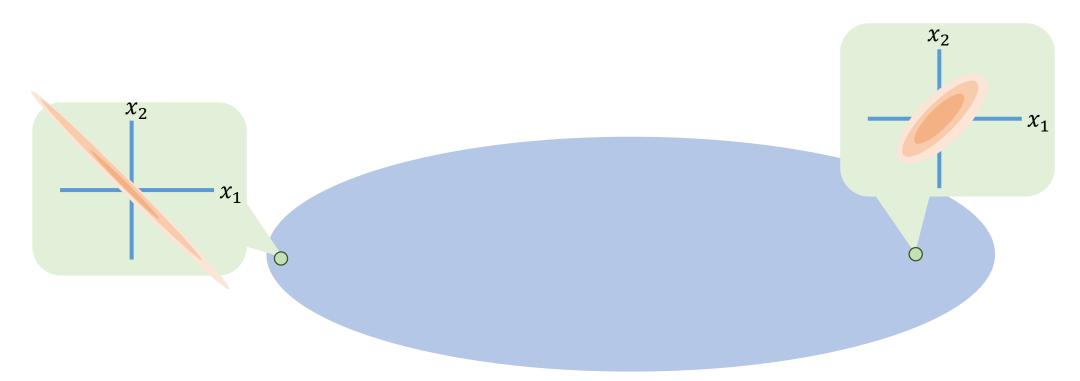
General Result

Question: is there an antithetic distribution that always works better than i.i.d.?

Yes: sampling without replacement is always a tiny bit better.

No Free Lunch (Theorem 1): no antithetic distribution work better than sampling without replacement for every function f.

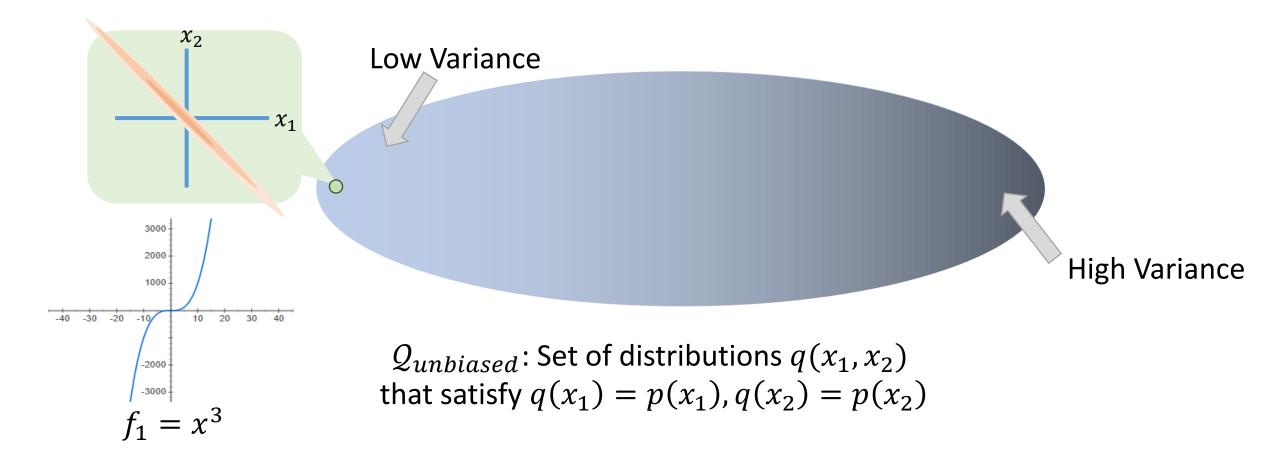
Valid Distribution Set



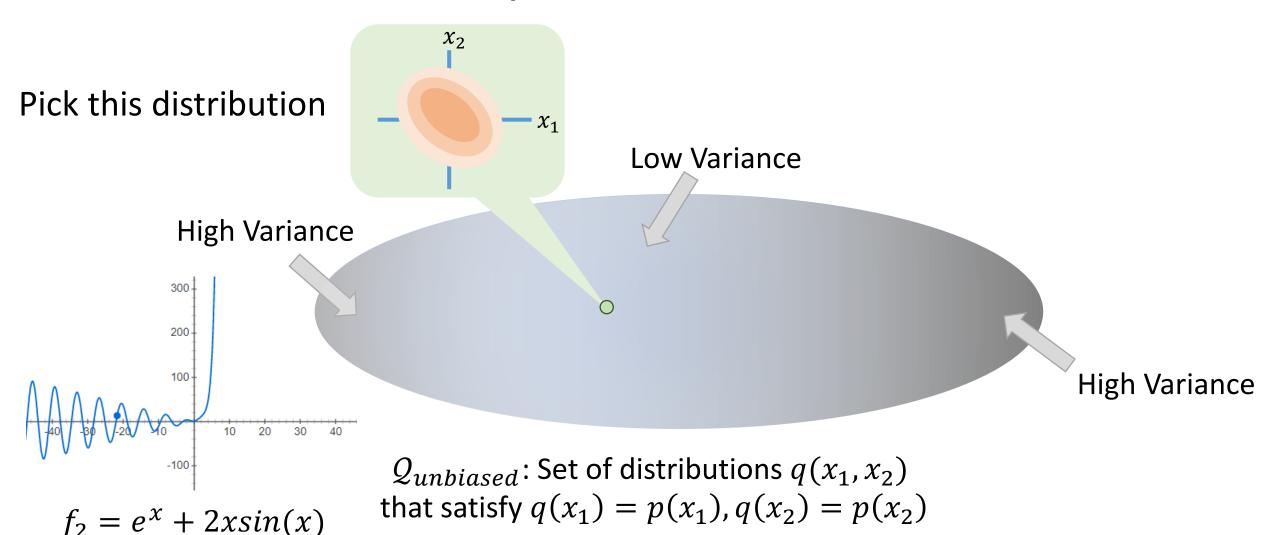
 $Q_{unbiased}$: Set of distributions $q(x_1, x_2)$ that satisfy $q(x_1) = p(x_1)$, $q(x_2) = p(x_2)$

Variance of example functions

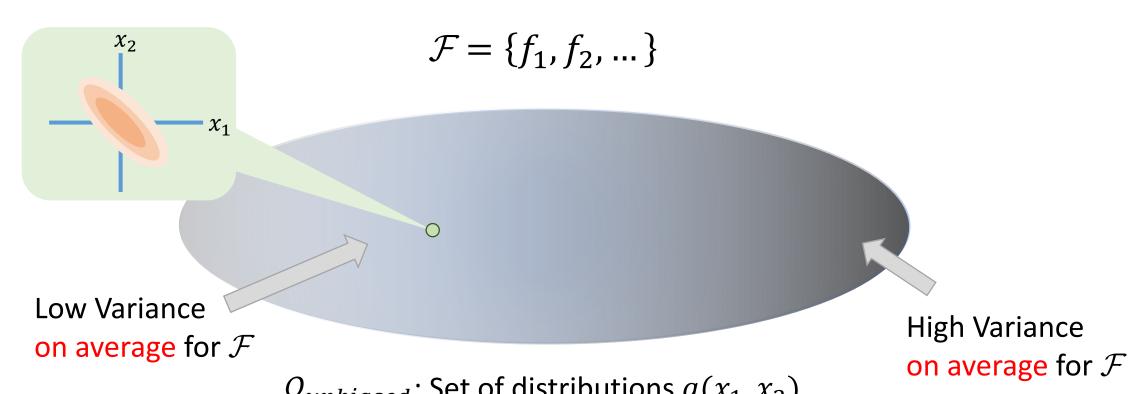
Pick this distribution



Variance of example functions

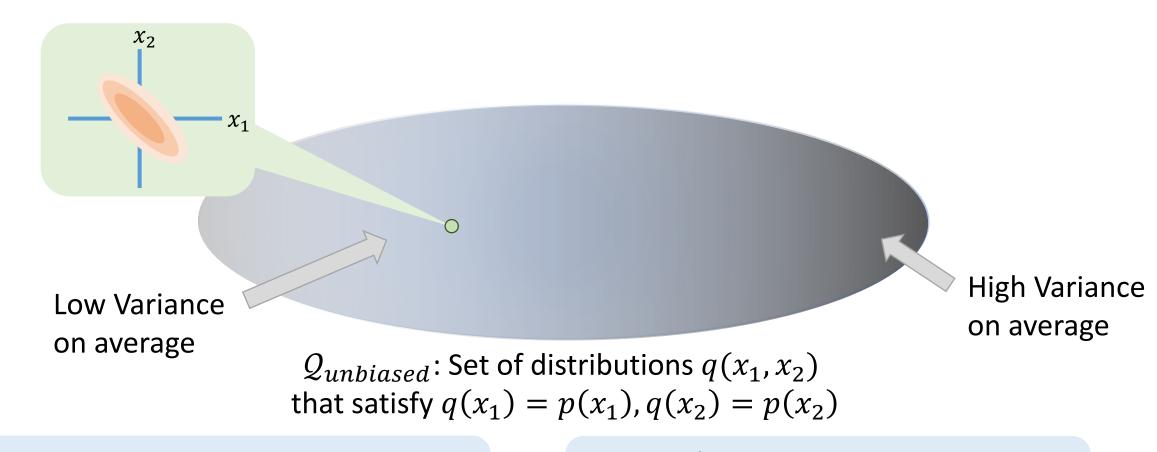


Pick Good Distribution for a Class of Functions



 $Q_{unbiased}$: Set of distributions $q(x_1, x_2)$ that satisfy $q(x_1) = p(x_1)$, $q(x_2) = p(x_2)$

Pick Good Distribution for a class of functions



Training Pick a good q for several functions

Generalization
Low variance for similar functions

Training Objective

$$\min_{q} \mathbb{E}_{f \sim \mathcal{F}} \left[\operatorname{Var}_{q(x_1, x_2)} \left[\frac{f(x_1) + f(x_2)}{2} \right] \right]$$

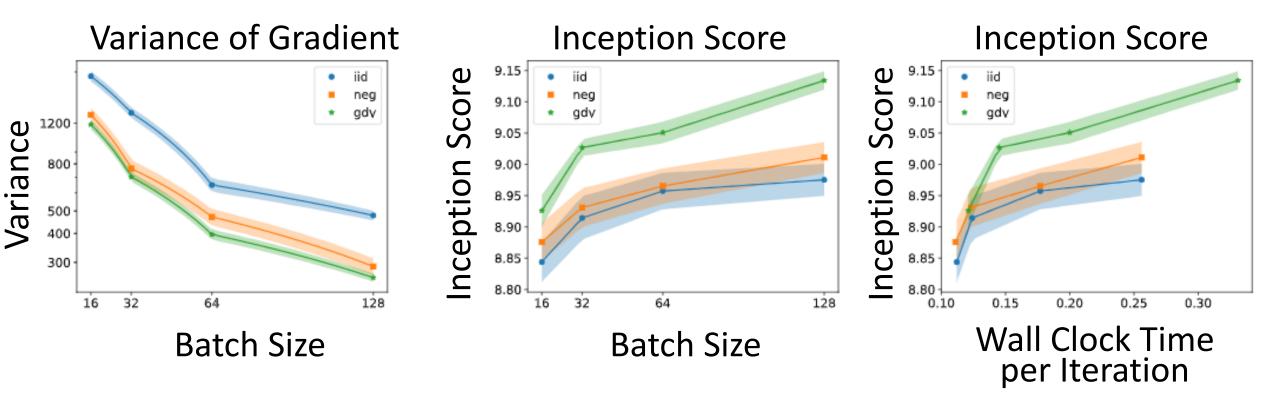
s.t.
$$q(x_1, x_2) \in Q_{unbiased}$$

Practical Training Algorithm

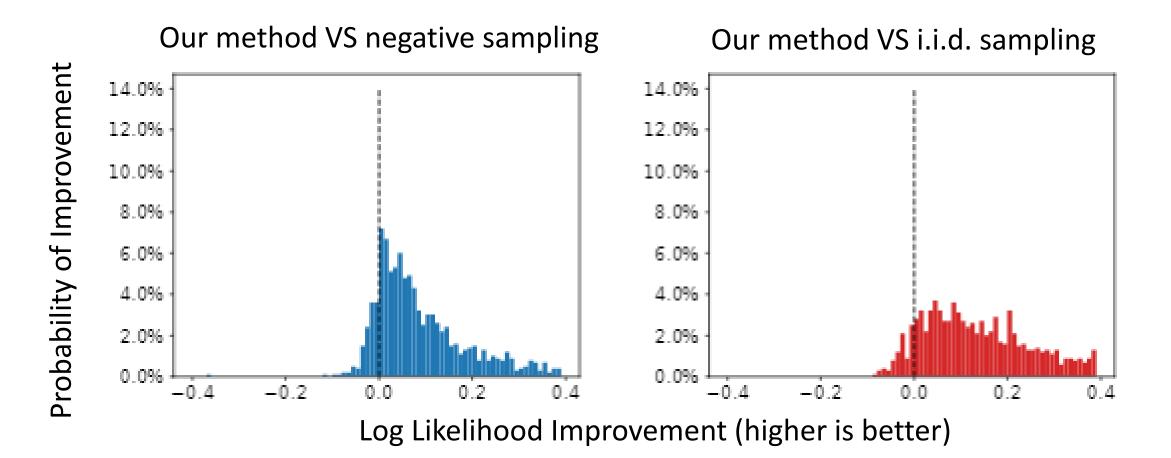
We design

- 1. Parameterization for $Q_{unbiased}$ via copulas.
- 2. A surrogate objective to optimize the variance.

Wasserstein GAN w/ gradient penalty



Importance Weighted Autoencoder



Conclusion

- Define a general family of (parameterized) unbiased antithetic distribution.
- Propose an optimization framework to learn the antithetic distribution based on the task at hand.
- Sampling from the resulting joint distribution reduces variance at negligible computation cost.

Welcome to our poster session for further discussions! Thursday 6:30-9pm @ Pacific Ballroom #205