Gibbs Sampling from
k-Determinantal Point Processes

Alireza Rezaei
University of Washington

Based on joint work with

Shayan Oveis Gharan



Point Process: A distribution on subsets of [N] = {1,2, ..., N}.

Determinantal Point Process: There is a PSD kernel L € RY*N such that

VS C [N]: P[S] « det (L)




Point Process: A distribution on subsets of [N] = {1,2, ..., N}.

Determinantal Point Process: There is a PSD kernel L € RY*N such that

VS € [N]: P[S] < det (Lg)
k-DPP: Conditioning of a DPP on picking subsets of size k

Focus of the talk:
Sampling from k-
DPPs

if |S| = k:IP[S] o det(Ls)
otherwise : P[S] = 0




Point Process: A distribution on subsets of [N] = {1,2, ..., N}.
Determinantal Point Process: There is a PSD kernel L € RV*N such that

VS € [N]: P[S] < det (Lg)
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Focus of the talk:
Sampling from k-
DPPs

if |S| = k:P[S] o< det(Lg)
otherwise : P[S] = 0

DPPs are Very popular probabilistic models in machine learning to capture diversity.

Applications [Kulesza-Taskar’11, Dang’05, Nenkova-Vanderwende-McKeown’06, Mirzasoleiman-Jegelka-Krause’17]

— Image search, document and video summarization, tweet timeline generation, pose

estimation, feature selection
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Continuous Domain

Input: PSD operator L: C X C — R
and k

select a subset S © C with k points
from a distribution with PDF function

(x—y)E‘l(x—y))

Ex. Gaussian : L(x,y) = exp (_ 2

p(S) o det({L(x,¥)}xyes)

Applications.
— Hyper-pa rameter tuning [Dodge-Jamieson-Smith’17]

— Learning mixture of Gaussiansaffandi-Fox-Taskar'13]



Random Scan Gibbs Sampler for K-DPP

1. Stay at the current state S = {x, ... X3} with prob %
2. Choose x; € S u.a.r

3. Choose y & S from the conditional dist m(.|S — x; is
chosen)

Continuous: PDF(y) o m(xq, ... X;_1, V), Xj41, o) Xg))
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lx=yI2
)

» Using a rejection sampler as the conditional oracles for Gaussian kernels L(x,y) = exp(— —

defined a unit sphere in R, the total running time is

* If k =poly(d): poly(d, o)
— 1
. Ifk <ed ®ando = 0(1): poly(d) - K°®



Thank you!
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