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Point Process: A distribution on subsets of 𝑁 = {1,2,… ,𝑁}. 

Determinantal Point Process: There is a PSD kernel 𝐿 ∈ ℝ𝑁×𝑁 such that

DPPs are Very popular probabilistic models in machine learning to capture diversity.

∀𝑆 ⊆ 𝑁 : ℙ 𝑆 ∝ det 𝐿𝑆

𝒌-DPP: Conditioning of a DPP on picking subsets of size 𝑘

if 𝑆 = 𝑘: ℙ 𝑆 ∝ det 𝐿𝑆

otherwise : ℙ 𝑆 = 0

Focus of the talk:
Sampling from 𝑘-

DPPs

Applications [Kulesza-Taskar’11, Dang’05, Nenkova-Vanderwende-McKeown’06, Mirzasoleiman-Jegelka-Krause’17]

— Image search, document and video summarization, tweet timeline generation, pose 

estimation, feature selection
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Continuous Domain

Input: PSD operator 𝐿: 𝒞 × 𝒞 → ℝ
and 𝑘

select a subset 𝑆 ⊂ 𝒞 with  𝑘 points 
from a distribution with PDF function

𝑝(𝑆) ∝ det 𝐿(𝑥, 𝑦) 𝑥,𝑦∈𝑆
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Applications.

— Hyper-parameter tuning [Dodge-Jamieson-Smith’17]

— Learning mixture of Gaussians[Affandi-Fox-Taskar’13] 

Ex. Gaussian : 𝐿 𝑥, 𝑦 = exp −
𝑥−𝑦 Σ−1 𝑥−𝑦
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Random Scan Gibbs Sampler for 𝐾-DPP

1. Stay at the current state 𝑆 = {𝑥1, … 𝑥𝑘} with prob
1

2
.

2. Choose 𝑥𝑖 ∈ 𝑆 u.a.r

3. Choose 𝑦 ∉ 𝑆 from the conditional dist 𝜋 . 𝑆 − 𝑥𝑖 is 
chosen) 

Continuous: PDF 𝑦 ∝ 𝜋 𝑥1, … 𝑥𝑖−1, 𝑦, 𝑥𝑖+1, … , 𝑥𝑘 )
S ∈

[𝑁]

𝑘

y

𝑥𝑖



Main Result

Given a 𝑘-DPP 𝜋, an “approximate” sample from 𝜋 can be generated by running the 

Gibbs sampler for 𝝉 = ෩𝑶 𝒌𝟒 ⋅ 𝐥𝐨𝐠 (𝐯𝐚𝐫𝝅
𝒑𝝁

𝒑𝝅
) steps where 𝜇 is the starting dist.
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 Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R’16]

 Mixing time is independent of 𝑁, so the running time in distributed settings is sublinear.
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 Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R’16]

 Mixing time is independent of 𝑁, so the running time in distributed settings is sublinear.

Continuous:  Given access to conditional oracles, 𝜇 can be found so 𝜏 = 𝑂(𝑘5log 𝑘).

 First algorithm with a theoretical guarantee for sampling from continuous 𝑘-DPP.

 Using a rejection sampler as the conditional oracles for Gaussian kernels 𝐿 𝑥, 𝑦 = exp(−
𝑥−𝑦 2

𝜎2
)

defined a unit sphere in ℝ𝑑, the total running time is

• If 𝑘 =poly(d): poly(𝑑, 𝜎)

• If 𝑘 ≤ 𝑒𝑑
1−𝛿

and 𝜎 = 𝑂 1 :  poly 𝑑 ⋅ 𝑘𝑂(
1

𝛿
)

Being able to 
run the chain.




