
Gibbs Sampling from
𝑘-Determinantal Point Processes

Based on joint work with

Shayan Oveis Gharan

Alireza Rezaei
University of Washington

Point Process: A distribution on subsets of 𝑁 = {1,2,… ,𝑁}.

Determinantal Point Process: There is a PSD kernel 𝐿 ∈ ℝ𝑁×𝑁 such that

∀𝑆 ⊆ 𝑁 : ℙ 𝑆 ∝ det 𝐿𝑆

𝑳𝑺

Point Process: A distribution on subsets of 𝑁 = {1,2,… ,𝑁}.

Determinantal Point Process: There is a PSD kernel 𝐿 ∈ ℝ𝑁×𝑁 such that

∀𝑆 ⊆ 𝑁 : ℙ 𝑆 ∝ det 𝐿𝑆

𝒌-DPP: Conditioning of a DPP on picking subsets of size 𝑘

if 𝑆 = 𝑘: ℙ 𝑆 ∝ det 𝐿𝑆

otherwise : ℙ 𝑆 = 0

Focus of the talk:
Sampling from 𝑘-

DPPs

𝑳𝑺

Point Process: A distribution on subsets of 𝑁 = {1,2,… ,𝑁}.

Determinantal Point Process: There is a PSD kernel 𝐿 ∈ ℝ𝑁×𝑁 such that

DPPs are Very popular probabilistic models in machine learning to capture diversity.

∀𝑆 ⊆ 𝑁 : ℙ 𝑆 ∝ det 𝐿𝑆

𝒌-DPP: Conditioning of a DPP on picking subsets of size 𝑘

if 𝑆 = 𝑘: ℙ 𝑆 ∝ det 𝐿𝑆

otherwise : ℙ 𝑆 = 0

Focus of the talk:
Sampling from 𝑘-

DPPs

Applications [Kulesza-Taskar’11, Dang’05, Nenkova-Vanderwende-McKeown’06, Mirzasoleiman-Jegelka-Krause’17]

— Image search, document and video summarization, tweet timeline generation, pose

estimation, feature selection

𝑳𝑺

Continuous Domain

Input: PSD operator 𝐿: 𝒞 × 𝒞 → ℝ
and 𝑘

select a subset 𝑆 ⊂ 𝒞 with 𝑘 points
from a distribution with PDF function

𝑝(𝑆) ∝ det 𝐿(𝑥, 𝑦) 𝑥,𝑦∈𝑆

Continuous Domain

Input: PSD operator 𝐿: 𝒞 × 𝒞 → ℝ
and 𝑘

select a subset 𝑆 ⊂ 𝒞 with 𝑘 points
from a distribution with PDF function

𝑝(𝑆) ∝ det 𝐿(𝑥, 𝑦) 𝑥,𝑦∈𝑆

Applications.

— Hyper-parameter tuning [Dodge-Jamieson-Smith’17]

— Learning mixture of Gaussians[Affandi-Fox-Taskar’13]

Ex. Gaussian : 𝐿 𝑥, 𝑦 = exp −
𝑥−𝑦 Σ−1 𝑥−𝑦

2

Random Scan Gibbs Sampler for 𝐾-DPP

1. Stay at the current state 𝑆 = {𝑥1, … 𝑥𝑘} with prob
1

2
.

2. Choose 𝑥𝑖 ∈ 𝑆 u.a.r

3. Choose 𝑦 ∉ 𝑆 from the conditional dist 𝜋 . 𝑆 − 𝑥𝑖 is
chosen)

Continuous: PDF 𝑦 ∝ 𝜋 𝑥1, … 𝑥𝑖−1, 𝑦, 𝑥𝑖+1, … , 𝑥𝑘)
S ∈

[𝑁]

𝑘

y

𝑥𝑖

Main Result

Given a 𝑘-DPP 𝜋, an “approximate” sample from 𝜋 can be generated by running the

Gibbs sampler for 𝝉 = ෩𝑶 𝒌𝟒 ⋅ 𝐥𝐨𝐠 (𝐯𝐚𝐫𝝅
𝒑𝝁

𝒑𝝅
) steps where 𝜇 is the starting dist.

Main Result

Given a 𝑘-DPP 𝜋, an “approximate” sample from 𝜋 can be generated by running the

Gibbs sampler for 𝝉 = ෩𝑶 𝒌𝟒 ⋅ 𝐥𝐨𝐠 (𝐯𝐚𝐫𝝅
𝒑𝝁

𝒑𝝅
) steps where 𝜇 is the starting dist.

Discrete: A simple greedy initialization gives 𝜏 = 𝑂 𝑘5log 𝑘 . Total running time is 𝑂 𝑁 . poly 𝑘 .

 Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R’16]

 Mixing time is independent of 𝑁, so the running time in distributed settings is sublinear.

Main Result

Given a 𝑘-DPP 𝜋, an “approximate” sample from 𝜋 can be generated by running the

Gibbs sampler for 𝝉 = ෩𝑶 𝒌𝟒 ⋅ 𝐥𝐨𝐠 (𝐯𝐚𝐫𝝅
𝒑𝝁

𝒑𝝅
) steps where 𝜇 is the starting dist.

Discrete: A simple greedy initialization gives 𝜏 = 𝑂 𝑘5log 𝑘 . Total running time is 𝑂 𝑁 . poly 𝑘 .

 Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R’16]

 Mixing time is independent of 𝑁, so the running time in distributed settings is sublinear.

Continuous: Given access to conditional oracles, 𝜇 can be found so 𝜏 = 𝑂(𝑘5log 𝑘).

 First algorithm with a theoretical guarantee for sampling from continuous 𝑘-DPP.

Being able to
run the chain.

Main Result

Given a 𝑘-DPP 𝜋, an “approximate” sample from 𝜋 can be generated by running the

Gibbs sampler for 𝝉 = ෩𝑶 𝒌𝟒 ⋅ 𝐥𝐨𝐠 (𝐯𝐚𝐫𝝅
𝒑𝝁

𝒑𝝅
) steps where 𝜇 is the starting dist.

Discrete: A simple greedy initialization gives 𝜏 = 𝑂 𝑘5log 𝑘 . Total running time is 𝑂 𝑁 . poly 𝑘 .

 Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R’16]

 Mixing time is independent of 𝑁, so the running time in distributed settings is sublinear.

Continuous: Given access to conditional oracles, 𝜇 can be found so 𝜏 = 𝑂(𝑘5log 𝑘).

 First algorithm with a theoretical guarantee for sampling from continuous 𝑘-DPP.

 Using a rejection sampler as the conditional oracles for Gaussian kernels 𝐿 𝑥, 𝑦 = exp(−
𝑥−𝑦 2

𝜎2
)

defined a unit sphere in ℝ𝑑, the total running time is

• If 𝑘 =poly(d): poly(𝑑, 𝜎)

• If 𝑘 ≤ 𝑒𝑑
1−𝛿

and 𝜎 = 𝑂 1 : poly 𝑑 ⋅ 𝑘𝑂(
1

𝛿
)

Being able to
run the chain.

