Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits

Martin Zhang

joint work with:

David Tse & James Zou Stanford University

SNP1 SNP2 ···

SNP m

$$P_1 \sim \frac{1}{n} \sum_{j=1}^{n} \mathbb{I}\{T_{1,j}^{null} \ge t_1^{obs}\}$$

SNP1 SNP2 ···

SNP m

Monte Carlo test

$$P_1 \qquad P_2$$

Benjamini Hochberg procedure

Data-dependent # of discoveries

Control $FDR = \mathbb{E}\left[\frac{false\ discovery}{discovery}\right]$

SNP1 SNP2 ···

SNP m

Benjamini Hochberg procedure

Data-dependent # of discoveries

Control $FDR = \mathbb{E}\left[\frac{false\ discovery}{discovery}\right]$

SNP1 SNP2

SNP m

Computational cost: nm

m hypothesis tests

 \times n MC samples per test

Benjamini Hochberg procedure

Data-dependent # of discoveries

Control $FDR = \mathbb{E}\left[\frac{false\ discovery}{discovery}\right]$

Genome-wide association studies

$$m = 500,000$$

$$n = 50,000,000$$

m hypothesis tests

n MC samples per test

Genome-wide association studies

$$m = 500,000$$
 $n = 50,000,000$

$$n = 50,000,000$$

Total MC samples:
$$nm = 2.5 \times 10^{13}$$

Typical computation time: ~2 months

m hypothesis tests

n MC samples per test

Genome-wide association studies

$$m = 500,000$$

$$n = 50,000,000$$

Total MC samples: $nm = 2.5 \times 10^{13}$

Typical computation time: ~2 months

Can we make it faster?

m hypothesis tests

n MC samples per test

Theorem (informal):

Expected # of MC samples: \sqrt{nm}

baseline: nm

same discoveries with high probability; information theoretically optimal

Theorem (informal):

Expected # of MC samples: \sqrt{nm}

baseline: nm

same discoveries with high probability; information theoretically optimal

GWAS example:

2 months \rightarrow 1 hour with the same discoveries

Quantities to estimate:

Quantities to estimate:

BH threshold au^*

Quantities to estimate:

BH threshold τ^*

How each p-value compares with au^*

Quantities to estimate:

BH threshold τ^*

How each p-value compares with au^*

Results

Adaptive Monte Carlo Multiple Testing (AMT)

Quantities to estimate:

BH threshold au^*

How each p-value compares with τ^*

Quantities to estimate:

BH threshold τ^*

How each p-value compares with au^*

Adaptive Estimation via Multi-Armed Bandits