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Generative Models and Global Structure

Full Image Y5 of Image Baseline Completion



Our Approach: Global Structure as Programs




Application to Image Completion
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Learning via Program Synthesis - Phase 1
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Learning via Program Synthesis - Phase 1
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Learning via Program Synthesis - Phase 1

Program ﬁ Structure
Synthesis Rendering
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Learning via Program Synthesis - Phase 2
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Comparison to Baselines

Synthetic Facades
SGM BL SGM BL

GLCIC 106.8 163.66 141.8 1959
CycleGAN 91.8 218.7 1244 2514
VED 44570.4 524429 87554 8636.3

Model

Our approach (Synthesis-Guided Generative Model, SGM) significantly outperforms
the baseline in 5 out of 6 experiments in image completion (as well as in all image
generation experiments).

(Scores for GLCIC/CycleGAN represent Fréchet Inception Distance, scores for VED represent negative log likelihood).



Experimental Results
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Experimental Results
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Future Work

*More expressive programs
*Better ways of incorporating program structure

Domains beyond images



