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Intuition

 Consider a batch of particles {z;},i=1,...,n with distribution ¢(z)
* Update these particles {z} by a small amount (preserve continuity),

T(z) =z+s-h(z)

such that the distribution of {T'(z;)}, denoted as §(z), is closer to p(x),
the distribution of {z;}

D(q(2)|p(z)) < D(q(z)|p(x))



Variational Gradient Flow (VGrow)




* Consider f-divergence
Dy(g@)lp(e)) = [ p(e)f (e

where f:R! — R! is convex and f(1) =0.
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* KL, JS, Jeffery and log-D divergences are the special cases of f-
divergence.

By calculating functional gradient (MATH part), we have

h(z) = —f"(r(z))Vr(z)
where r(z) = 42

p(z) .
e Recall that  10g2%) — 4z) , 7(x) can be estimated as #(z) = exp(—d(z))

q(z)
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Connection with Differential
Equation

Gradient Method
XT
B =B + e —(y - Xp*T)
n
From Gradient Method to ODE

gk _ glk=1) T - ) X'
: _ T(y—Xﬁ(k ) e =0 P TE (y — XB(¢))
Bt) = (XTX)" (I — exp (_tXZXD X1y
Similarly
2R = (=D g p (2 (D) ) _ h(z(t))



* Proposed a general framework to learn deep generative models via
Variational Gradient Flow (VGrow) on probability spaces.

* Proved: The evolving distribution of {z;} that asymptotically converges
to the target distribution p(x) is governed by a vector field, which is
the negative gradient of the first variation of the f-divergence
between q(z) and p(x). (Based Vl/asov-Fokker-Planck equation)

* Established connections of VGrow with other popular methods, such
as VAE, GAN and flow-based methods (Stein Variational Gradient).

* We also evaluated several commonly used divergences, including
Kullback-Leibler, Jensen-Shannon, Jeffrey divergences as well as our
newly discovered “logD” divergence which serves as the objective
function of the logD-trick GAN.



