Bayesian Optimization of Composite Functions

Raúl Astudillo

Joint work with Peter I. Frazier
ICMI 2019

Problem

We consider problems of the form

$$\max_{x \in \mathcal{X}} f(x),$$

where

$$f(x) = g(h(x))$$

and

- $h: \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}^m$ is a time-consuming-to-evaluate black-box.
- $q:\mathbb{R}^m\to\mathbb{R}$ and its gradient are known in closed form and fast-to-evaluate.

Composite functions arise naturally in practice

• Hyperparameter tuning of classification algorithms:

$$g(h(x)) = -\sum_{j=1}^{m} h_j(x),$$

where $h_j(x)$ is the classification error on the j-th class under hyperparameters x.

• Calibration of expensive simulators:

$$g(h(x)) = -\sum_{j=1}^{m} (h_j(x) - y_j)^2,$$

where h(x) is the output of the simulator under parameters x and y is a vector of observed data.

Standard BayesOpt approach

- Set a Gaussian process distribution on f.
- While evaluation budget is not exhausted:
 - Compute the posterior distribution on f given the evaluations so far, $\{(x_i, f(x_i))\}_{i=1}^n$,
 - Choose the next point to evaluate as the one that maximizes an acquisition function a:

$$x_{n+1} \in \operatorname{argmax}_x a_n(x),$$

where the subscript n indicates the dependence on the posterior distribution at time n.

Background: Expected Improvement (EI)

The most widely used acquisition function in standard BayesOpt is:

$$EI_n(x) = \mathbb{E}_n \left[\left\{ f(x) - f_n^* \right\}^+ \right],$$

where

- f_n^* is the best observed value so far,
- \mathbb{E}_n is the conditional expectation under the posterior after n evaluations.

Background: Expected Improvement (EI)

The most widely used acquisition function in standard BayesOpt is:

$$EI_n(x) = \mathbb{E}_n \left[\left\{ f(x) - f_n^* \right\}^+ \right].$$

When f(x) is Gaussian, EI and its derivative have a closed form which make it easy to optimize.

Our contribution

- 1. A **statistical approach** for modeling f that greatly improves over the standard BayesOpt approach.
- An efficient way to optimize the expected improvement under this new statistical model.

Our approach

- ullet Model h using a multi-output Gaussian process instead of f directly.
- This implies a (non-Gaussian) posterior on f(x) = g(h(x)).
- To decide where to sample next: compute and optimize the expected improvement under this new posterior.

Expected Improvement for Composite Functions

Our acquisition function is Expected Improvement for Composite Functions (EI-CF):

$$EI-CF_n(x) = \mathbb{E}_n \left[\left\{ g(h(x)) - f_n^* \right\}^+ \right],$$

where h is a GP, making h(x) Gaussian.

Challenge: maximizing EI-CF is hard

Expected Improvement for Composite Functions (EI-CF):

$$EI-CF_n(x) = \mathbb{E}_n \left[\left\{ g(h(x)) - f_n^* \right\}^+ \right].$$

Challenge:

- When h is a GP and g is nonlinear, f(x) = g(h(x)) is **not Gaussian**.
- EI-CF does not have a closed form, making it hard to optimize.

Our approach to maximize EI-CF

- Construct an unbiased estimator of $\nabla \text{EI-CF}_n(x)$ using the reparametrization trick and infinitesimal perturbation analysis.
- Use this estimator within multi-start stochastic gradient ascent to find an approximate solution of

$$\operatorname{argmax}_{x} \operatorname{EI-CF}_{n}(x).$$

Asymptotic consistency

Theorem.

Under suitable regularity conditions, $\mathrm{EI\text{-}CF}$ is asymptotically consistent, i.e., it finds the true global optimum as the number of evaluations goes to infinity.

Numerical experiments

Conclusion

- Exploiting composite objectives can improve BayesOpt performance by 3-6 orders of magnitude.
- Come to our poster: Wed 6:30-9pm Pacific Ballroom #237.
- Check out our code: https://github.com/RaulAstudillo06/BOCF