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Introduction

e Setup f: X — [0,1], X C R? compact.
o Observations:

> Static setting: y; ~ Bernoulli(f(x;))
> Dynamic setting: y; ~ Bernoulli(A; f(x;) + B;), with 0 < A; + B; <1

e Goal: Approximate f over X’ from observation set S = {(x;,¥i)}i=1,...,n

e Need regularity assumption on f
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Logistic Gaussian Process
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e Regularity assumption: 5
f6) = o(h(x)),  h~ GP(u,r) 0

where o(z) = H% -5
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e Observations: y; ~ Bernoulli(o(h((x;))) Figure: Sample from GP prior

e Issues:

> No analytically tractable posterior
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> Requires costly Bayesian computations
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Figure: Sample from LGP prior
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Smooth Beta Processes: Static setting

e Regularity assumption: f is L-Lipschitz continuous, i.e.,
F(x) = FO)] < Lix - x|l2 ¥, %' € X

e Observations: y; ~ Bernoulli(f(x;))

« Prior: p(ylx) = Beta(a(x), A(x))

e Update of f(x|X) after observing X = {(x1,%1),---, (Xn,yn)} :

PYIX,x) = Beta { a(x) + > by,=16(x,%:), B(X) + D dy,=0r(x,x)
=1 1=1

Theorem (Informal - Convergence of static Beta process)

1
d+2 ,

2
Using kernel k(x,x') = 0| x—x/|,<a,, , Where Ay =L @2n

sup Ex (B ( (76 - 169)*) ) = 0 (1077,

xeX

I"Continuous Correlated Beta Processes’, Goetschalckx et al.
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Smooth Beta Processes: Dynamic setting

e Regularity assumption: f is L-Lipschitz continuous, i.e.,

IF(x) = G < Lix = x[|2 Vx,x" € X
e Observations: y; ~ Bernoulli(A; f(x;) + B;), with 0 < A; + B; < 1.
o Prior: p(y|x) = Beta(a(x), A(x))

e Update of f(x|X) after observing X = {(x1,%1), - - -, (Xn,yn)}:

p(ylX,x) = Z Cl'Beta (a(x) + 4, B(x) + n — 7)

i=1

where {C"}i—1,....n depend on {A;, Bi};=1,....n and a kernel «.

Theorem (Informal - Convergence of dynamic Beta process)

2 __1_
Using kernel k(x,x’) = O|x—x'|2<A;  Where Ay [ =L @+2n  d+2, and under the

assumption A; + B; =1,

sup Ex (B ((76ci) - 169)%) ) =0 (1#an 7).

xeX
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Numerical results in Dynamic setting
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Benefits of SBP

e Fast computation of posterior update

e Can include contextual features directly influencing success probabilities

e Simple to implement
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For more details...

Welcome to our poster #233!!
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