Efficient learning of smooth probability functions from Bernoulli tests with guarantees

Paul Rolland paul.rolland@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

> July 2019, Joint work with

Ali Kavis, Alexander Immer, Adish Singla, Volkan Cevher @ LIONS

Introduction

- Setup $f: \mathcal{X} \to [0,1], \ \mathcal{X} \subset \mathbb{R}^d$ compact.
- Observations:
 - \triangleright Static setting: $y_i \sim \text{Bernoulli}(f(\mathbf{x}_i))$
 - \triangleright Dynamic setting: $y_i \sim \text{Bernoulli}(A_i f(\mathbf{x}_i) + B_i)$, with $0 \le A_i + B_i \le 1$
- Goal: Approximate f over \mathcal{X} from observation set $\mathcal{S} = \{(\mathbf{x}_i, y_i)\}_{i=1,...,n}$
- Need regularity assumption on f

Logistic Gaussian Process

• Regularity assumption:

$$f(\mathbf{x}) = \sigma(h(\mathbf{x})), \qquad h \sim \mathsf{GP}(\mu, \kappa)$$
 where $\sigma(x) = \frac{1}{1+e^{-x}}.$

- Observations: $y_i \sim \text{Bernoulli}(\sigma(h((\mathbf{x}_i))))$
- Issues:
- ▷ No analytically tractable posterior
- ▶ Requires costly Bayesian computations

Figure: Sample from GP prior

Figure: Sample from LGP prior

Smooth Beta Processes: Static setting

• Regularity assumption: f is L-Lipschitz continuous, i.e.,

$$|f(\mathbf{x}) - f(\mathbf{x}')| \le L ||\mathbf{x} - \mathbf{x}'||_2 \ \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$$

- Observations: $y_i \sim \text{Bernoulli}(f(\mathbf{x}_i))$
- Prior: $p(y|\mathbf{x}) = \text{Beta}(\alpha(\mathbf{x}), \beta(\mathbf{x}))$
- Update of $\tilde{f}(\mathbf{x}|X)$ after observing $X = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}^{1}$:

$$p(y|X,\mathbf{x}) = \mathrm{Beta}\left(\alpha(\mathbf{x}) + \sum_{i=1}^n \delta_{y_i=1}\kappa(\mathbf{x},\mathbf{x}_i), \beta(\mathbf{x}) + \sum_{i=1}^n \delta_{y_i=0}\kappa(\mathbf{x},\mathbf{x}_i)\right)$$

Theorem (Informal - Convergence of static Beta process)

Using kernel
$$\kappa(\mathbf{x}, \mathbf{x}') = \delta_{\parallel \mathbf{x} - \mathbf{x}' \parallel_2 \leq \Delta_{n,L}}$$
 where $\Delta_{t,L} = L^{-\frac{2}{d+2}} n^{-\frac{1}{d+2}}$,

$$\sup_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{X} \left(\mathbb{E} \left(\left(\tilde{f}(\mathbf{x}|X) - f(\mathbf{x}) \right)^{2} \right) \right) = \mathcal{O} \left(L^{\frac{2d}{d+2}} n^{-\frac{2}{d+2}} \right).$$

¹"Continuous Correlated Beta Processes", Goetschalckx et al.

Smooth Beta Processes: Dynamic setting

• Regularity assumption: f is L-Lipschitz continuous, i.e.,

$$|f(\mathbf{x}) - f(\mathbf{x}')| \le L ||\mathbf{x} - \mathbf{x}'||_2 \ \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$$

- Observations: $y_i \sim \text{Bernoulli}(A_i f(\mathbf{x}_i) + B_i)$, with $0 \le A_i + B_i \le 1$.
- Prior: $p(y|\mathbf{x}) = \text{Beta}(\alpha(\mathbf{x}), \beta(\mathbf{x}))$
- Update of $\tilde{f}(\mathbf{x}|X)$ after observing $X = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$:

$$p(y|X,\mathbf{x}) = \sum_{i=1}^n C_i^n \operatorname{Beta}\left(\alpha(\mathbf{x}) + i, \beta(\mathbf{x}) + n - i\right)$$

where $\{C_i^n\}_{i=1,...,n}$ depend on $\{A_i,B_i\}_{i=1,...,n}$ and a kernel κ .

Theorem (Informal - Convergence of dynamic Beta process)

Using kernel $\kappa(\mathbf{x},\mathbf{x}')=\delta_{\parallel\mathbf{x}-\mathbf{x}'\parallel_2<\Delta_{t,L}}$ where $\Delta_{n,L}=L^{-\frac{2}{d+2}}n^{-\frac{1}{d+2}}$, and under the assumption $A_i + B_i = 1$,

$$\sup_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_X \left(\mathbb{E} \left(\left(\tilde{f}(\mathbf{x}|X) - f(\mathbf{x}) \right)^2 \right) \right) = \mathcal{O} \left(L^{\frac{2d}{d+2}} n^{-\frac{2}{d+2}} \right).$$

Numerical results in Dynamic setting

Benefits of SBP

- Fast computation of posterior update
- Can include contextual features directly influencing success probabilities
- Simple to implement

For more details...

Welcome to our poster #233!!

