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Introduction

Particle-based Variational Inference Methods (ParVIs):

e Represent the variational distribution g by particles; update the
particles to minimize KL,(q).

e More flexible than classical Vls; more particle-efficient than MCMCs.
Related Work:

e Stein Variational Gradient Descent (SVGD) [3] simulates the
gradient flow (steepest descending curves) of KL, on Py (X) [2].

e The Blob and DGF methods [1] simulate the gradient flow of KL,
on the Wasserstein space P,(X).



ParVlis Approximate P,(X') (Wasserstein) Gradient Flow

Remark 1
Existing ParVI methods approximate Wasserstein Gradient flow by

smoothing the density or functions.
Smoothing the Density
e Blob [1] partially smooths the density.
v = —V(%Eq[log(q/p)]) = "= —V(%qulog(&/P)l)-

e GFSD fully smooths the density.

v :=Vlogp — Vlog g = v*™*°

= Vlogp—Vlogg.
Smoothing Functions

e SVGD restricts the optimization domain E(Z, to HP.
e GFSF smoothed functions in a similar way: 05°F = g + KK L.
(Note {sveD — "GFSFR.)

£ = V g log p(xM), Ry = K(xD,xD), R/, = ¥,V K(xD), x).



ParVlis Approximate P,(X’) Gradient Flow by Smoothing

e Equivalence:
Smoothing-function objective = Eq[L(v)], L : £Z — L2 linear.

= E4[L(v)] = Equk[L(V)] = Eq[L(v) * K] = Eq[L(v * K)].
e Necessity: grad KL,(g) undefined at g = § := & 2?1:1 Oy

Theorem 2 (Necessity of smoothing for SVGD)
Forq =g and v e L3:

GF
Jmax (v, v>£2,
VELP,HVHL%:I §

has no optimal solution.

ParVils rely on the smoothing assumption!
No free lunch!




Bandwidth Selection via the Heat Equation

Note

Under the dynamics dx = —V log g;(x) dt, g: evolves following the heat
equation (HE): 9;q:(x) = Ag:(x).
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Figure 1: Comparison of HE (bottom row) with the median method (top row)
for bandwidth selection.



Nesterov’s Acceleration Method on Riemannian Manifolds

e Riemannian Accelerated Gradient (RAG) [4] (with simplification):
G = Exp,,_, (cvica),
{fk = Exp,, {—r?’ﬂl (% Exp,”, (k1) — #5%1)] :
e Riemannian Nesterov's method (RNes) [5] (with simplification):

{qk = EXPrk,l(‘kafl)v

re = Equk {q Exp;k1 [ Exp,ki1 ((1_C2) Expfk:(qk,l)—&—cz Exp;il(qk))} }

e Inverse exponential map: computationally expensive

Proposition 3 (Inverse exponential map)
For pairwise close samples {x()}; of q and {y()}; of r, we have
(Expg () () =y — x0)

e Parallel transport: hard to implement
Proposition 4 (Parallel transport)
For pairwise close samples {x()}; of g and {y)}; of r, we have
(I'g(v))(y(’)) ~ v(x), Vv € T4P>.



Acceleration Framework for ParVls

Algorithm 1 The acceleration framework with Wasserstein Accelerated
Gradient (WAG) and Wasserstein Nesterov's method (WNes)

1: WAG: select acceleration factor o > 3;
WNes: select or calculate ¢;,c € RT;

2: Initialize {Xéi)}f\’zl distinctly; let yéi) = x(()i);
3: for k=12, kpax, do
4:  for = 1,--: ,N, do
5: Find v(y\"”,) by SVGD/Blob/DGF/GFSD/GFSF;
6 X =yl Fev(yly):
7: Y = x4 {WAG 0 = x)y) + =2 (yD));
- kT Xk
WNes: (e, — 1)(x” — x£>1)
end for
9: end for

N

max J =1

10: Return {Xk




Bayesian Logistic Regression (BLR)

0.76
0.74
> >
9 9
e e
5 5
gon — svepwap | §°77
----- SVGD-PO
0.70 ==+ SVGD-WAG 0.70 - Blob-WAG
: — -+ SVGD-WNes —-- Blob-WNes
0 2500 5000 7500 0 2500 5000 7500
0.76
0.74
> >
9 9
e e
5 5
20.72 H —— GFSD-WGD 20.72 —— GFSF-WGD
----- GFSD-PO «+es+ GFSF-PO
0.70 ==+ GFSD-WAG 0.70 == GFSF-WAG
N — -+ GFSD-WNes — -+ GFSF-WNes
0 2500 5000 7500 0 2500 5000 7500
iteration iteration

Figure 2: Acceleration effect of WAG and WNes on BLR on the Covertype
dataset, measured by prediction accuracy on test dataset. Each curve is

averaged over 10 runs.
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Figure 3: Acceleration effect of WAG and WNes

on LDA. Inference results

are measured by the

hold-out perplexity. Curves are averaged over 10

runs.
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Contributions (in theory):

e ParVIs approximate the Wasserstein gradient flow by a compulsory
smoothing assumption.
e ParVIs either smooth the density or smooth functions, and they are

equivalent.
Contributions (in practice):

e Two new ParVls (GFSF and GFSD).
e A principled bandwidth selection method for the smoothing kernel.

e An acceleration framework for general ParViIs.
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