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Bayesian Optimization
Meets Bayesian Optimal Stopping
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Machine Learning (ML) models have achieved unprecedented level of performances

Problem:
Choice of hyperparameters
* Reason: high computational cost

2

Solution:

Bayesian Optimization (BO)

* Sample efficiency: requires a small number of function evaluations

* Theoretical guarantee: Gaussian Process-Upper Confidence Bound (GP-UCB)
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* Many ML models require iterative training — wasted
* e.g. stochastic gradient descent (neural network) computation

5 BO iterations

validation error

training epochs
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* Many ML models require iterative training — wasted
* e.g. stochastic gradient descent (neural network) computation

\ > BO iterations

Can we early-stop unpromising
hyperparameters to save resource?

validation error

training epochs
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Many ML models require iterative training | wasted
e e.g. stochastic gradient descent (neural network) computation

Can we early-stop unpromising
hyperparameters to save resource?

validation error

a principled optimal stopping
rule is needed

Bayesian Optimal Stopping (BOS) ‘

\ 2 BO iterations

training epochs



* Contribution
 We propose BO-BOS, which unifies BO (GP-UCB) and BOS to achieve epoch-
efficient hyper-parameter tuning

* We show that BO-BOS is asymptotically no-regret and performs effectively in
practice
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e fort=1,2..
e choose the hyperparameter X; to query by maximizing the GP-UCB acquisition function




The BO-BOS Algorithm =

e fort=1,2..
e choose the hyperparameter X; to query by maximizing the GP-UCB acquisition function

* Formulate & solve the BOS problem
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'he BO-BOS Algorithm S

e fort=1,2..
e choose the hyperparameter X; to query by maximizing the GP-UCB acquisition function

* Formulate & solve the BOS problem

* Train the ML model using x,, early-stop the training if BOS outputs the stopping decision

expected loss of stopping < expected loss of continuing

BOS outputs the stopping decision if x; is
believed to end up performing worse than the
currently found optimum

Stop?

training epochs Continue to epochn + 1?
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e fort=1,2..
e choose the hyperparameter X; to query by maximizing the GP-UCB acquisition function

* Formulate & solve the BOS problem

* Train the ML model using x,, early-stop the training if BOS outputs the stopping decision

* Update Gaussian process belief of the objective function

expected loss of stopping < expected loss of continuing

BOS outputs the stopping decision if x; is
believed to end up performing worse than the
currently found optimum

Stop?

training epochs Continue to epochn + 1?
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* BO aims to minimize the simple regret: Sr = f(z*) — max f(z)

/ expectation over the uncertainty introduced by BOS
~—1
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* Matches the simple regret of GP-UCB,
thus asymptotically vanishes

* Asymptotically vanish if the BOS parameters are chosen with
consideration of the exploration vs. exploitation trade-off



Experiments

* Hyperparameter Tuning

e Convolutional Neural Networks

CIFAR-10 dataset
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Experiments

* Beyond Hyperparameter Tuning:
* Policy search for Reinforcement Learning (Swimmer-v2 from OpenAl, Mujoco)

* Joint hyperparameter tuning and feature selection

Average Return
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Thank you!

For more information, please visit our poster at Pacific Ballroom #228



