Scalable Training of Inference Networks for Gaussian-Process Models

Jiaxin Shi
Tsinghua University

Joint work with

Mohammad Emtiyaz Khan

Jun Zhu

Gaussian Process

$$f(\mathbf{x}) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$$
 mean function

covariance function / kernel

inducing points

Posterior inference

$$p(\mathbf{f}, \mathbf{f}^*|\mathbf{y}) \propto p(\mathbf{f}, \mathbf{f}^*) p(\mathbf{y}|\mathbf{f})$$
 $\mathcal{O}(N^3)$ complexity, conjugate likelihoods

Sparse variational GP [Titsias, 09; Hensman et al., 13]

$$q(\mathbf{f}, \mathbf{f}^*, \mathbf{u}) := q(\mathbf{u})p(\mathbf{f}, \mathbf{f}^*|\mathbf{u})$$

$$\mathcal{L}(q, \mathbf{Z}) := \mathbb{E}_{q(\mathbf{u})p(\mathbf{f}|\mathbf{u})} \left[\log p(\mathbf{y}|\mathbf{f}) \right] - \text{KL}[q(\mathbf{u}) || p(\mathbf{u}) \right]$$

Inference Networks for GP Models

Remove sparse assumption

Inference Networks for GP Models

Remove sparse assumption

Examples of Inference Networks

- Bayesian neural networks: [Sun et al., 19]
 - intractable output density

function space $f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$

weight space $f(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}), \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

 Inference network architecture can be derived from the weight-space posterior

$$q(f): f(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + \xi_{\theta}(\mathbf{x}), \quad \mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{V})$$

- Random feature expansions [Cutajar, et al., 18]
- Deep neural nets

Minibatch Training is Difficult

Functional Variational Bayesian Neural Networks (Sun et al., 19)

Measurement points

ullet Consider matching variational and true posterior processes at $ext{arbitrary}(\mathbf{X}^{\mathcal{M}})$

$$\mathrm{KL}[q(\mathbf{f}^{\mathcal{M}})||p(\mathbf{f}^{\mathcal{M}}|\mathbf{y})] \leq \mathrm{KL}[q_{\phi}(\mathbf{f}^{\mathcal{M}},\mathbf{f})||p(\mathbf{f}^{\mathcal{M}},\mathbf{f}|\mathbf{y})]$$

Full batch fELBO

$$\mathcal{L}_{\mathbf{X}^{\mathcal{M}},\mathbf{X}}(q) = \log p(\mathcal{D}) - \text{KL}[q(\mathbf{f}^{\mathcal{M}}, \mathbf{f}) || p(\mathbf{f}^{\mathcal{M}}, \mathbf{f} | \mathbf{y})].$$

$$= \sum_{(\mathbf{x}, y) \in \mathcal{D}} \mathbb{E}_{q_{\phi}} \left[\log p(y | f(\mathbf{x})) \right] - \text{KL}[q(\mathbf{f}^{\mathcal{M}}, \mathbf{f}) || p(\mathbf{f}^{\mathcal{M}}, \mathbf{f})]$$

Practical fELBO

$$\frac{1}{|\mathcal{D}_s|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_s} \mathrm{E}_{q_{\phi}} \left[\log p(y|f(\mathbf{x})) \right] - \lambda \mathrm{KL}[q(\mathbf{f}^{\mathcal{D}_s}, \mathbf{f}^M) || p(\mathbf{f}^{\mathcal{D}_s}, \mathbf{f}^M) \right].$$

• This objective is doing improper minibatch for the KL divergence term

Stochastic, functional mirror descent

work with the functional density directly

[Dai et al., 16; Cheng & Boots, 16]

- natural gradient in the density space
- minibatch approximation with stochastic functional gradient

$$q_{t+1} = \underset{q}{\operatorname{argmax}} \int \hat{\partial} \mathcal{L}(q_t) q(f) df - \frac{1}{\beta_t} \operatorname{KL}\left[q \| q_t\right]$$

closed-form solution as an adaptive Bayesian filter

$$q_{t+1}(f) \propto p(y_n|f)^{N\beta_t} p(f)^{\beta_t} q_t(f)^{1-\beta_t}$$
 seeing next data point adapted prior

- sequentially applying Bayes' rule is the most natural gradient
 - o in conjugate models: equivalent to natural gradient for exponential families

[Raskutti & Mukherjee, 13; Khan & Lin, 17]

Minibatch training of inference networks

- an idea from filtering: bootstrap
 - o similar idea: temporal difference (TD) learning with function approximation

Minibatch training of inference networks

- (Gaussian likelihood case) closed-form marginals of $\hat{q}_{t+1}(f)$ at locations $\mathbf{X}_{\mathcal{M}}$
 - equivalent to GP regression

$$p(\mathbf{f}_{\mathcal{M}}, f_n)^{\beta_t} q_{\gamma_t}(\mathbf{f}_{\mathcal{M}}, f_n)^{1-\beta_t} := \mathcal{N}\left(\left[\begin{array}{c} \widetilde{\mathbf{m}}_{\mathcal{M}} \\ \widetilde{\mathbf{m}}_n \end{array}\right], \left[\begin{array}{c} \widetilde{\mathbf{K}}_{\mathcal{M}, \mathcal{M}} & \widetilde{\mathbf{K}}_{\mathcal{M}, n} \\ \widetilde{\mathbf{K}}_{n, \mathcal{M}} & \widetilde{\mathbf{K}}_{n, n} \end{array}\right]\right)$$

$$\propto \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{\mathcal{M}, \mathcal{M}} & \mathbf{K}_{\mathcal{M}, n} \\ \mathbf{K}_{n, \mathcal{M}} & \mathbf{K}_{n, n} \end{bmatrix}\right)^{\beta_t} \times \mathcal{N}\left(\begin{bmatrix} \mu_{\mathcal{M}} \\ \mu_n \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathcal{M}, \mathcal{M}} & \boldsymbol{\Sigma}_{\mathcal{M}, n} \\ \boldsymbol{\Sigma}_{n, \mathcal{M}} & \boldsymbol{\Sigma}_{n, n} \end{bmatrix}\right)^{(1-\beta_t)}$$

$$\hat{q}_{t+1}(\mathbf{f}_{\mathcal{M}}, f_n) \propto \mathcal{N}(y_n | f_n, \sigma^2/(N\beta_t)) \times \mathcal{N}\left(\begin{bmatrix} \widetilde{\mathbf{m}}_{\mathcal{M}} \\ \widetilde{\mathbf{m}}_n \end{bmatrix}, \begin{bmatrix} \widetilde{\mathbf{K}}_{\mathcal{M}, \mathcal{M}} & \widetilde{\mathbf{K}}_{\mathcal{M}, n} \\ \widetilde{\mathbf{K}}_{n, \mathcal{M}} & \widetilde{\mathbf{K}}_{n, n} \end{bmatrix}\right)$$

• (Nonconjugate case) optimize an upper bound of $\mathrm{KL}\left[q_{\gamma}(\mathbf{f}_{\mathcal{M}})\|\hat{q}_{t+1}(\mathbf{f}_{\mathcal{M}})\right]$

$$\min_{\gamma} \text{KL} \left[q_{\gamma}(\mathbf{f}_{\mathcal{M}}, f_{n}) \| \hat{q}_{t+1}(\mathbf{f}_{\mathcal{M}}, f_{n}) \right] \Leftrightarrow \max_{\gamma} \mathcal{L}_{t}(q_{\gamma}; q_{\gamma_{t}}, \mathbf{X}_{\mathcal{M}})
\mathcal{L}_{t}(q_{\gamma}; q_{\gamma_{t}}, \mathbf{X}_{\mathcal{M}}) = \mathbb{E}_{q_{\gamma}(\mathbf{f}_{\mathcal{M}}, f_{n})} \left[N\beta_{t} \log p(y_{n} | f_{n}) + \beta_{t} \log p(\mathbf{f}_{\mathcal{M}}, f_{n}) + (1 - \beta_{t}) \log q_{\gamma_{t}}(\mathbf{f}_{\mathcal{M}}, f_{n}) - \log q_{\gamma}(\mathbf{f}_{\mathcal{M}}, f_{n}) \right]$$

Measurement points vs. inducing points

- inducing points expressiveness of variational approximation
- measurement points variance of training

Effect of proper minibatch training

Fix underfitting

• Better performance with more measurement points

Airline Delay (700K)

METRIC	M=100			M=500	M=500	
	SVGP	GPN ET	FBNN SVGF	GPNET	FBNN	
RMSE Test LL		24.055 -4.616	23.801 23.698 -4.586 -4.594		24.114 -4.582	

Regression & Classification

Regression benchmarks

METHODS	MNIST	CIFAR10
SVGP, RBF-ARD (Krauth et al., 2016) Conv GP (van der Wilk et al., 2017) SVGP, CNN-GP (Garriga-Alonso et al., 2019) GPNet, CNN-GP	1.55% 1.22% 2.4% 1.12%	35.4% - 24.63 %
NN-GP (Lee et al., 2018) CNN-GP (Garriga-Alonso et al., 2019) ResNet-GP (Garriga-Alonso et al., 2019) CNN-GP (Novak et al., 2019)	1.21% 0.96% 0.84% 0.88%	44.34% - - 32.86%

GP classification with a prior derived from infinite-width Bayesian ConvNets

Poster #227

Code: https://github.com/thjashin/gp-infer-net