Discovering Latent Covariance Structures for Multiple Time Series

Anh Tong and Jaesik Choi

Ulsan National Institute of Science and Technology

Introduction

- Goal: extract explainable representations (temporal covariance)
 shared among multiple inputs (time series)
- Our contributions:
 - Latent Kernel Model (LKM): a new combination of two nonparametric
 Bayesian methods handling multiple time series
 - Partial Expansion (PE): an efficient kernel search for multiple inputs
 - Automated reports emphasizing the characteristics of individual data

Two nonparametric methods

• Gaussian process (GP): prior over function values

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

Important to choose an appropriate kernel

Indian Buffet Process (IBP): prior over binary matrices

Finite (Beta-Bernoulli)
$$z_{nk} \sim \operatorname{Bernoulli}(\theta_k) \qquad \lim_{K \to \infty} P(\mathbf{Z}|\alpha) = 0$$

$$\theta_k \sim \operatorname{Beta}(\alpha/K, 1) \qquad [\mathbf{Z}] = lof(\mathbf{Z})$$

$$P(\mathbf{Z}|\alpha) = \prod_k \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(\frac{\alpha}{K})} \frac{\Gamma(1 + \frac{\alpha}{K})}{\Gamma(N + 1 + \frac{\alpha}{K})} \qquad \lim_{K \to \infty} P([\mathbf{Z}]|\alpha) = \exp\{-\alpha H_N\} \frac{\alpha^{K_+}}{\prod_{h > 0} K_h!} \prod_{k \le K_+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

Exchangeability among columns

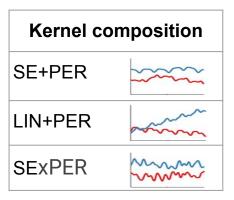
Compositional kernel learning in Automatic Statistician

[Duvenaud et al. 2013]

Two main components:

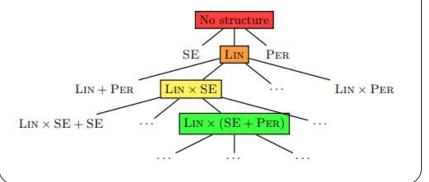
- Language of models:
 - Base kernels: SE, LIN, PER
 - Operators: +, x, change point & window

Base kernels Linear (LIN) Smooth (SE) Periodic (PER)



• Search procedure:

- A greedy manner
- Model is selected based on trade-off between model and data complexity



Relational kernel learning [Hwang et al. 2016] introduced a kernel learning for multiple time series by assuming a globally shared a kernel and individual spectral mixture kernels.

Latent Kernel Model [This paper]

- Construct GP kernels by a sum of kernels with indicator matrix Z
 - (1) sample from IBP

 $\mathbf{Z} \sim \operatorname{IBP}(\alpha)$ membership

n: index of time series k: index of explainable kernel

(2) kernel construction

- $c_n(t,t') = \sum_k z_{nk} c_k(t,t')$
- (3) function values are modeled by GP $f_n(t) \sim \mathcal{GP}(0, c_n(t, t'))$

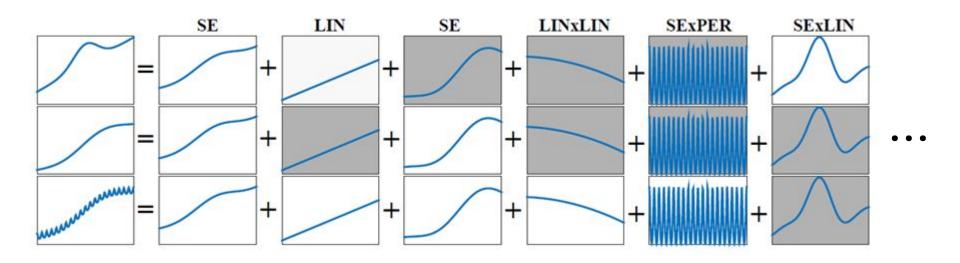
Proposition 1. With $\mathbf{Z} \sim \mathrm{IBP}(\alpha)$, the likelihood of LKM

$$p(\mathbf{X}|\mathbf{Z}) = \prod_n \mathcal{N}(\mathbf{x}_n; \mathbf{0}, \mathbf{D}(\mathbf{z}_n))$$

where $\mathbf{D}(\mathbf{z}_n) = \sum_{k=1}^{\infty} \mathbf{C}_k + \sigma_n^2 \mathbf{I}$, is well-defined.

Proof. We showed with the commutative among additive kernels and the exchangeability of columns (lof).

Latent Kernel Model [This paper]

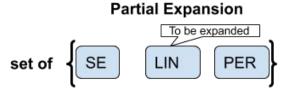


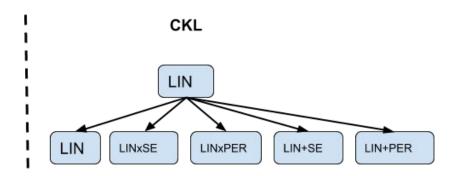
Enlarged covariance structure search

- Challenge: CKL cannot directly apply to multiple time series,
 e.g., a different structure for a time series
- Partial expansion (PE):

Enlarged covariance structure search

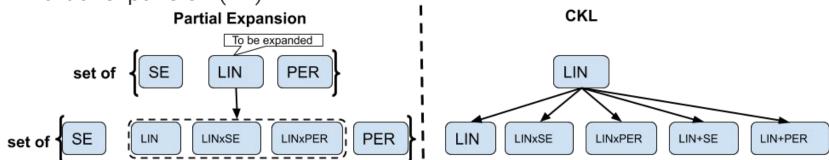
- Challenge: CKL cannot directly apply to multiple time series,
 e.g., a different structure for a time series
- Partial expansion (PE):





Enlarged covariance structure search

- Challenge: CKL cannot directly apply to multiple time series,
 e.g., a different structure for a time series
- Partial expansion (PE):



- Maintain a set of kernels
- Iteratively expand a kernel in the set to obtain a new model
- Note: PE explores a larger structure space

Approximate inference

Maximize the evidence lower bound

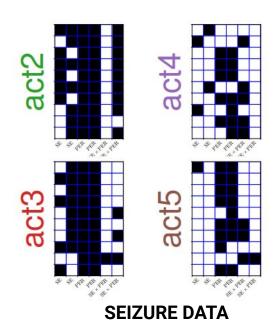
$$\log p(\mathbf{X}) \geq \mathbb{E}[\log p(\mathbf{Z})] + \mathbb{E}[\log p(\mathbf{X}|\mathbf{Z})] + H[q]$$

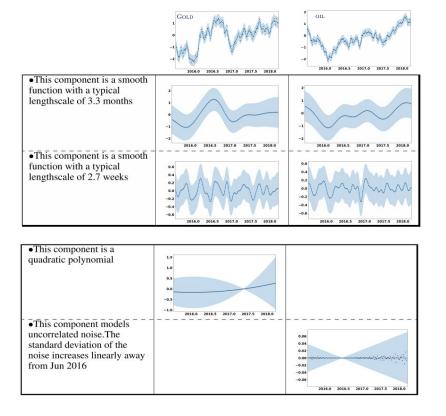
• Challenge: Estimating $\mathbb{E}[\log p(\mathbf{X}|\mathbf{Z})]$ is expensive, e.g., # computing Gaussian log-likelihood grows exponentially as **K** increases.

Solution:

- Relax discrete R.V. to continuous R.V. by reparameterization with Gumbel-Softmax trick
- Approximate by MCMC

Qualitative demonstration

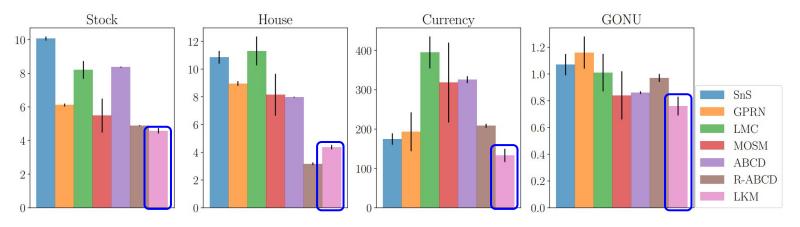




FINANCIAL DATA

- Interpretability of IBP matrix: reveal characteristics of different activities
- A new type of automatic generated reports taken into account the comparative relations

Quantitative result



- Tested on various data sets, e.g. closely correlated to loosely correlated
- Outperform multi-output and CKL-based methods

Conclusion

- Present a model analyzing and explaining multiple time series
- Improve kernel search procedure to facilitate model discovery
- Provide a detailed comparison report

poster #226