Random Function Priors for Correlation Modeling

Aonan Zhang John Paisley

Columbia University

Setup

Model exchangeable data $X = [X_1, ..., X_N]$

$$\theta = (\theta_k)_{k \in K}$$
 collection of features

$$\theta = (\theta_k)_{k \in K} \qquad \underbrace{collection\ of\ features}$$

$$Z_n = [Z_{n1}, ..., Z_{nk}, ..., Z_{nK}] \in \mathbb{R}_+^K$$

$$\underbrace{the\ extent\ \theta_k\ is\ used\ to\ express\ X_n}.$$

Sparse factor models: $Z_n \in \{0,1\}^K$

Topic models: $Z_n \in \Delta^{K-1}$

Problem: model flexible correlations among $Z_{n1},...,Z_{nK}$

Complexity: 2^{O(K)}

Exponential family?

Solution: random function priors

Model the matrix Z

Joint distribution

$$p(X, Z, \theta) = p(Z) \cdot \prod_{k=1}^{K} p(\theta_k) \cdot \prod_{n=1}^{N} p(X_n | Z_n, \theta)$$
????
i.i.d. application dependent

Workflow to derive p(Z)

Exchangeability assumptions on p(Z)

representation theorems

 \rightarrow p(Z) is a random function model

Representation theorem

Trick: Transform Z (random matrix) to ξ (random measure) on S.

$$\xi = \sum_{n,k} Z_{nk} \delta_{\tau_n,\sigma_k}$$

Assumption: ξ is separately exchangeable.

Proposition. A discrete random measure ξ on S is separately exchangeable, if and only if almost surely,

$$\xi = \sum_{n,k} f_n(\vartheta_k) \delta_{\tau_n,\sigma_k} + \text{trivial terms}$$

$$Z_{nk} = f_n(\vartheta_k)$$
Poisson process on \mathbf{R}_+^2

$$T_{nk} = f_n(\vartheta_k)$$

The power of random function priors

Prototype to applicable models

2.
$$f(h_n, \vartheta_k) \to f(h_n, \vartheta_k, \ell_k)$$

$$\xrightarrow{} augment \ the \ 2d \ Poisson \ process \ (\vartheta_k, \sigma_k)$$

$$to \ higher \ dimension \ (\vartheta_k, \sigma_k, \ell_k)$$

Model correlations through arbitrary moments

Assume
$$Z_{nk} = f(h_n^{\mathsf{T}} \mathscr{C}_k)$$

Then
$$\mathbb{E}[Z_{nk_1}Z_{nk_2}...Z_{nk_i}] = \mathbb{E}[f(h_n^{\mathsf{T}}\mathscr{E}_{k_1})\cdots f(h_n^{\mathsf{T}}\mathscr{E}_{k_i})]$$

Visualize correlations via paintboxes

Each paintbox is a heatmap.

Visualize correlations via paintboxes

Correlated Topics

Un-correlated Topics

Model performance

Our model: PRME

Summarize

More details

A representation theorem for correlation modeling.

A deeper understanding of IBP beyond the Beta-Bernoulli process.

A generalization of Kingman's and Broderick's paintbox models.

Connections to random graphs.

• • •

Poster: #222

Code: https://github.com/zan12/prme