Compressed Factorization:

Fast and Accurate Low-Rank Factorization of Compressively-Sensed Data

Vatsal Sharan*, Kai Sheng Tai*, Peter Bailis & Gregory Valiant Stanford University

Learning from compressed data

- Suppose we are given data that has been compressed via random projections
 - e.g., in compressive sensing (Donoho'06, Candes+'08)
- What learning tasks can be performed directly on compressed data?
- Prior work:
 - support vector machines (Calderbank+'09)
 - linear discriminant analysis (Durrant+'10)
 - principal component analysis (Fowler'09, Zhou+'11, Ha+'15)
 - regression (Zhou+'09, Maillard+'09, Kaban'14)

This work:

Low-rank matrix and tensor factorization of compressed data

Example: clustering gene expression levels

- Data: 2D matrix of gene expression levels
- Want to use nonnegative matrix factorization (NMF) to cluster data (Gao+'05)
- Compressive measurement (Parvaresh+'08)

Compressed matrix factorization: Setup

- Consider an n x m data matrix M with rank-r factorization M = WH,
 where W is a sparse matrix
- We observe **only** the compressed matrix $\tilde{M} = PM$ (the $d \times n$ measurement matrix P is known)
- Goal:
 recover factors W and H from the compressed measurements M

Two possible ways to do this

- Naïve way:
 - Recover the original data matrix using compressed sensing
 - Compute the factorization of this decompressed matrix

- Consider factorizing the data in compressed space:
 - Compute a sparse rank-rfactorization $\tilde{M} = \tilde{W}\hat{H}$ (e.g., using NMF or Sparse PCA)
 - Run sparse recovery algorithm on each column of \tilde{W} to obtain \hat{W}

- Computational benefit of factorizing in compressed space:
 - requires only $r \ll m$ calls to the sparse recovery algorithm
 - much cheaper than the naïve approach

Two possible ways to do this

- Naïve way:
 - Recover the original data matrix using compressed sensing
 - Compute the factorization of this decompressed matrix

- Consider factorizing the data in compressed space:
 - Compute a sparse rank-r factorization $\tilde{M} = \tilde{W}\hat{H}$ (e.g., using NMF or Sparse PCA)
 - Run sparse recovery algorithm on each column of *W* to obtain *W*

Its efficient, but does it even work?

When would compressed factorization work?

- Say we find the factorization $\tilde{M} = (PW)H$
- Then we can use sparse recovery to find W from (PW), as the columns of W are sparse.

```
\tilde{M} = PM
M = WH
```

Question: Since matrix factorizations are **not** unique in general, under what conditions is it possible to recover this "correct" factorization $\tilde{M} = (PW)H$, from which the original factors can be successfully recovered??

Our contribution

- Theoretical result showing that compressed factorization works under simple sparsity and low rank conditions on the original matrix.
- Experiments on synthetic and real data showing the practical applicability.
- Similar theoretical and experimental results for tensor decompositions.
- Takeaway:
 - Random projections can "preserve" certain solutions of non-convex, NP-hard problems like NMF
- See our poster for more details!

Poster #187

vsharan@stanford.edu kst@cs.stanford.edu