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1 Regularization is Popular

e High-dimensional data with ¢; regularization (n < p)
o Genomic Data, Matrix Completion, Deep Learning, etc.
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Concrete Example 1

Lasso

Example 1: Lasso* (Sparse Linear Regression)

~ 1
6 € argmin ||y — X6[)% + Au[|6llx
0cQ 2n

(92 02
S
argmin £(6; Z) argmin £(6; &)
el <c 0 lellz<c 9
_C C ! -c c '
ol s ol m<c

*R. Tibshirani. Regression shrinkage and selection via the lasso. JRSS, Series B,1996.
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Concrete Example 2

Graphical Lasso

Example 2: Graphical Lasso* (Sparse Concentration Matrix)

© € argmin trace($0) — log det(0) + An||©||1 ot
ecst |

where 3 is a sample covariance matrix, ¥ | the symmetric and strictly positive
definite matrices, and ||©]|1,0x the ¢1-norm on the off-diagonal elements of ©.

Zero pattern of inverse covariance

*P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation by minimizing I1-penalized log-determinant
divergence. EJS, 2011
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Concrete Example 3
Group ¢; on Network Pruning Task

Example 3: Group ¢;* (Structured Sparsity of Weight Parameters)

6 € argmin £(0;D) + Anll€llg
1Y)

where 8 is a collection of weight parameters of neural networks, £ the neural
network loss (ex. softmax), and ||0||g the group sparsity regularizer.

Before Pruning Afeer Pruning ) channel-wise W/ =~ shortcut
——SIDNI I SN N R
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Synapses e s | | Nt
| “shape-wise -
\ Wi
filter-wise W depth-wise W
Pruning . . .
Neurons Figure: Encouraging group sparsity. For
example, [|0]lg= 3" ;l04]l2 with each
group g.

*W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning Structured Sparsity in Deep Neural Networks. NIPS, 2016
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Shrinkage Bias of Standard ¢; Penalty

@ As parameter size gets larger, the shrinkage bias effect also tends to be
larger.

e The /1 penalty is proportional to the size of parameters.

Despite the popularity of /1 penalty
(and also strong statistical guarantees),
s it really good enough?
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Non-convex Regularizers

Previous Work

e For amenable non-convex regularizers (such as
SCAD* and MCP**),

> Amenable regularizer: Resembles ¢; at the

origin and has vanishing derivatives at the tail.

— coordinate-wise decomposable.

> (Loh & Wainwright)*** provide the statistical
analysis on amenable regularizers.
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Non-convex Regularizers

Previous Work

e For amenable non-convex regularizers (such as =1
SCAD* and MCP**), 27

> Amenable regularizer: Resembles {1 at the ~®7] \Nonconyexi
origin and has vanishing derivatives at the tail. & 7

— coordinate-wise decomposable. TN\ LT
> (Loh & Wainwright)*** provide the statistical o

analysis on amenable regularizers. 5 0 5
t

What about more structurally complex regularizer?

*J. Fan and R. Li. Variable selection via non-concave penalized likelihood and its oracle properties. Jour. Amer. Stat. Ass., 96(456):1348-1360,

December 2001.

** Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The Annals of statistics, 38(2):894-942, 2010.

**%P_ Loh and M. J. Wainwright. Regularized M -estimators with non-convexity: statistical and algorithmic theory for local optima and algorithmic.
JMLR, 2015.

***p_ Loh and M. J. Wainwright. Support recovery without incoherence: A case for nonconvex regularization. The Annals of Statistics, 2017.
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Trimmed ¢; Penalty

Definition

@ In this paper, we study the Trimmed ¢; penalty.

o New class of regularizers.

Jihun Yun (KAIST) Trimmed £1 Penalty June 12, 2019 10 /40



Trimmed ¢; Penalty

Definition

@ In this paper, we study the Trimmed ¢; penalty.

o New class of regularizers.

o Definition:
For a parameter vector 8 € R?, we only /;-penalize each entry except
largest h entries (We call i the trimming parameter).
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Trimmed ¢; Penalty

Definition

@ In this paper, we study the Trimmed ¢; penalty.

o New class of regularizers.

o Definition:
For a parameter vector 8 € R?, we only /;-penalize each entry except
largest h entries (We call i the trimming parameter).

Parameter (The darker color, the larger value)

- AN /
~ ~
h p—nh
Penalty-free We only penalize the smallest p — h entries.
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Trimmed ¢; Penalty

First Formulation

Parameter (The darker color, the larger value)

EEEEE

' '
h —h
Penalty-free We only penalize the smallest p — h entries.

@ We can formalize by defining the order statistics of the parameter vector
101)|> [02)|> - -~ > |0y, the M-estimation with the Trimmed /; penalty is
minimize £(6;D) + \,R(0;h)
0eQ
where the regularizer R(0;h) = Z?:h,+1|9(j)‘ (sum of smallest p — h entries

in absolute values).
e Importantly, the Trimmed ¢; is not amenable nor coordinate-wise separable.
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M-estimation with the Trimmed ¢; penalty

Second Formulation

@ We can rewrite the M-estimation with the Trimmed ¢; penalty by
introducing additional variable w:

P
 inimize - F(0,w) == L(6:D) + A, ;wﬂ@jl

such that 17w > p—h
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M-estimation with the Trimmed ¢; penalty

Second Formulation

@ We can rewrite the M-estimation with the Trimmed ¢; penalty by
introducing additional variable w:

P
 inimize - F(0,w) == L(6:D) + A, ;wﬂ@l

such that 17w > p—h

@ The variable w encodes the sparsity pattern and order information of 6.
As an ideal case,
e wj; = 0 for largest h entries
e w; = 1 for smallest p — h entries
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M-estimation with the Trimmed ¢; penalty

Second Formulation

@ We can rewrite the M-estimation with the Trimmed ¢; penalty by
introducing additional variable w:

p
SRS, 0= E0) 0 Sl

such that 17w > p—h

@ The variable w encodes the sparsity pattern and order information of 6.
As an ideal case,

e wj; = 0 for largest h entries
o w; = 1 for smallest p — h entries

o If we set the trimming parameter h = 0, it is just a standard /;.
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M-estimation with the Trimmed ¢; penalty

Second Formulation: Important Properties

p
inimize  F(60, w) == £(8; D) + A 10
(B, F0.0) = LOD) 40 w0

such that 17w > p —h

@ The objective function F is

o Weighted ¢;-regularized if we fix w.
e Linear in w with fixing 6.

e However, F is non-convex in jointly (8, w) because of coupling of 8 and w.

@ We use this second formulation for an optimization.
e Since we don't need to sort the parameter.

13 /40
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Trimmed ¢; Penalty

Unit Balls Visualization

e Trimmed ¢; Unit balls of 8 = (64, 65,63) in the 3-dimensional space.
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Trimmed ¢; Penalty

Unit Balls Visualization

e Trimmed ¢; Unit balls of 8 = (64, 65,63) in the 3-dimensional space.
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©
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Trimmed ¢; Penalty

Unit Balls Visualization

e Trimmed ¢; Unit balls of 8 = (64, 65,63) in the 3-dimensional space.
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Trimmed ¢; Penalty

Unit Balls Visualization

e Trimmed ¢; Unit balls of 8 = (64, 65,63) in the 3-dimensional space.
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Trimmed ¢; Penalty

Unit Balls Visualization

e Trimmed ¢; Unit balls of 8 = (64, 65,63) in the 3-dimensional space.

03 03 .

" ((\ HZ‘

6,
h=0

@ For h =0, the shape is the same as standard #; unit ball.
@ For h > 0, the penalty could be unbounded.

@ Since the largest h entries are not penalized, the unit ball could extend to
infinity in these directions.
o As h increases, the penalty would be more complicated.
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@ Statistical Analysis
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Statistical Analysis: Key Assumptions and Quantity

Assumptions:
(C1) The loss L is differentiable and convex.

(C2) Restricted Strong Convexity on 0: Let D be the set of all possible
error vectors for 8. Then, for all 8 — 8* € D,

logp, 2
Allg,
SN

(VLO*, A) —VLO"),A) > k| All5—7

where k; is a “curvature” parameter, and 7; a “tolerance”.
e Allowing a small loss difference to be translated to a small error 8 — ™.

o RSC condition is a standard one in this line of work.

Quantity:
o Let Q= [} V2L(0" + (8 — 6%))dt.
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Statistical Analysis

Theorem 1: General £o-error Bound and Variable Selection

o Consider an M-estimation problem with the Trimmed ¢; penalty.

o Under (C1)&(C2) and standard conditions, for any local minimum 6, we have

@ For every pair j1 € S, jo € S°, we have |6, > [6,,]

Jihun Yun (KAIST) Trimmed £1 Penalty June 12, 2019 17/
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Statistical Analysis

Theorem 1: General £o-error Bound and Variable Selection

o Consider an M-estimation problem with the Trimmed ¢; penalty.

o Under (C1)&(C2) and standard conditions, for any local minimum 6, we have

@ For every pair j1 € S, jo € S°, we have |6, > [6,,]

True Parameter
T [ [T T TTT]
— ——'" g >
S with |S] =k 5¢
Estimated Parameter

I [ [ [ [ []]
H/_/\ /

VT
Relevant features All non-relevant features
j1€S jo €8¢
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Statistical Analysis

Theorem 1: General £o-error Bound and Variable Selection

@ For every pair j1 € 5, jo € S°, we have |6, |> [0,
Q If h <k, all j € S are successfully estimated as zero and

18— 6"lloo< || (@s9) ' VL@O)s ]|+ 2| @s9)7!

[e9]
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Statistical Analysis

Theorem 1: General £o-error Bound and Variable Selection

@ For every pair j1 € 5, jo € S°, we have |6, |> [0,
Q If h <k, all j € S are successfully estimated as zero and

18— 6"lloo< || (@s9) ' VL@O)s ]|+ 2| @s9)7!

[e9]

True Parameter

4 | DEEEEEEEN
H_/k _

g
S with |S| =k 5°

Estimated Parameter

~—— -
VT
Trimming parameter All non-relevant features
h<k S
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Statistical Analysis

Theorem 1: General £o-error Bound and Variable Selection

@ For every pair j1 € S, j2 € S¢, we have \§j1|> 16,
Q If h <k, all j € S are successfully estimated as zero and

(Qss)™*

© If h > k, at least the smallest (in absolute) p — h entries in S¢ are exactly zero
and (|60 — 0| < [[(Qpg) " VL(0*)5 |, where U is defined as the h largest
absolute entries of 6 including S.

16— 6" l< [[(@s5) VL@ )s |+ s

oo
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Statistical Analysis

Theorem 1: General £o-error Bound and Variable Selection

@ For every pair j1 € S, j2 € S¢, we have \§j1|> 16,
Q If h <k, all j € S are successfully estimated as zero and

(Qss)™*

© If h > k, at least the smallest (in absolute) p — h entries in S¢ are exactly zero
and (|60 — 0| < [[(Qpg) " VL(0*)5 |, where U is defined as the h largest
absolute entries of 6 including S.

16— 6" l< [[(@s5) VL@ )s |+ s

oo

True Parameter

T [ TTTTTT]
— v —
S with |S| =k S¢

Estimated Parameter

o RN [ [ [ZerobT T |
- ~ T 5z

U with at least the smallest
Trimming parameter h > k& p — h entries in S¢
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Statistical Analysis

Theorem 2: General ¢>-error Bound

o Consider an M-estimation problem with Trimmed ¢; regularization where all
conditions in Theorem 1 hold.

@ For any local minimum @, the parameter estimation error in terms of £5-norm
is upper bounded as:

B e Con(VE/2+VE=F) ifh<k
: CAuVh/2 otherwise
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Statistical Analysis

Theorem 2: General ¢>-error Bound

o Consider an M-estimation problem with Trimmed ¢; regularization where all
conditions in Theorem 1 hold.

@ For any local minimum @, the parameter estimation error in terms of £5-norm
is upper bounded as:

CAuVh/2 otherwise

B e {C’/\n(\/E/QJm/k—h) if h <k

@ From our bound, h = k is the best case!
o We can choose h =< k via cross-validation.

Table: ¢5-error bound for different h values.

h<k h=k  h>k
16 —6%2 CM(YE+VE—R) Cx.YE xR
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Statistical Analysis

Remarks: Other alternative penalties vs. Trimmed ¢;

_ i} C)\n<\/E/2+\/H) fh<k @ px(t): (1, y)-amenable
10 — 6% ||2=

. e pa(t) + %u,tz is convex.
CAVh/2 otherwise o ph(t) =0 for [t|> 7.
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Statistical Analysis

Remarks: Other alternative penalties vs. Trimmed ¢;

CXn (V24 VE=R) i h<k (0 (ro)-amenabie

. e pa(t) + %u,tz is convex.
CAVh/2 otherwise o ph(t) =0 for [t|> 7.

16 — 6" o=

Table: £2-error bound comparison with universal constant ¢p in sub-Gaussian tail bounds.

Standard ¢ (R =0) (u,vy)-amenable Trimmed ¢; (h = k)
16 — 6|2 3co AnVE _co_ AnVk co AnVE

Kl 2 rclf%,u, 2 K 2
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Statistical Analysis

Remarks: Other alternative penalties vs. Trimmed ¢;

O (VE/2+ VE=R) ifh<k  ® o0 Gnamenti

. e pa(t) + %u,tz is convex.
CAVh/2 otherwise o ph(t) =0 for [t|> 7.

16 — 6" o=

Table: £2-error bound comparison with universal constant ¢p in sub-Gaussian tail bounds.

Standard ¢ (R =0) (u,vy)-amenable Trimmed ¢; (h = k)

Y 3co AnVE co AnVE co AnVE
16 = 671> W T TR

@ Trimmed ¢; can achieve three times smaller bound than standard one.
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Statistical Analysis

Remarks: Other alternative penalties vs. Trimmed ¢;

O (VE/2+ VE=R) ifh<k  ® o0 Gnamenti

. e pa(t) + %u,tz is convex.
CAVh/2 otherwise o ph(t) =0 for [t|> 7.

16 — 6" o=

Table: £2-error bound comparison with universal constant ¢p in sub-Gaussian tail bounds.

Standard ¢y (h =0) (p,~y)-amenable  Trimmed ¢; (h = k)

ko

Y 3co ApVE co AnVE co AnVE
16=671> W e M

@ Also, we have a smaller bound than non-convex regularizers since
(14, v)-amenable regularizers have (possibly large) u in the denominator.
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Statistical Analysis

Corollary 1: General ¢ rror Bound for Linear Regression

o Consider a linear regression problem with sub-Gaussian error €.

@ Under standard conditions as in Theorem 1 and incoherence condition on
sample covariance, with high probability, any local minimum @ satisfies

True Parameter True Parameter True Parameter

d | IEEEEEEENN © DEEEEEEEEEY | DEEEEEEEN
 —— ——
S with |S] = k s S with [S] = k s° S with [S] = k 5
Estimated Parameter Estimated Parameter Estimated Parameter
0 0 0

Relevant features All non-relevant features

at least the smallest
nes J2 € 5°

Trimming parameter Al non-relevant features U with
ye Irimming parameter h > k  p — h entries in S°

h<k
(D The absolute value of
relevant features is
always larger than non-relevant features.

(2) If we set the trimming parameter h smaller than
true sparsity level k,
all non-relevant parameters are estimated as zero.

{

5_p* logp
6*: True parameter |0 6" <1 \/; + AnCoo

6: Estimated parameter F—0"s < cx llol;,fn(ﬁ/2+ ﬁ,f,,)

(3 If we set h larger than true sparsity level k,
at least the smallest p — h entries
are estimated as zero.
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Optimization for Trimmed ¢; Regularized Program

@ For an optimization, we use our second formulation of trimmed
regularization problem

p
inimize F(0,w) = L£(0:D) + A\ w;l0;] st 1Tw>p—h
 minimize F(0,w) = £(6:D) + ;wghl s w>p
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Optimization for Trimmed ¢; Regularized Program

@ For an optimization, we use our second formulation of trimmed
regularization problem

p
inimize F(0,w) = L£(0:D) + A\ w;l0;] st 1Tw>p—h
 minimize F(0,w) = £(6:D) + ;wghl s w>p

o We update (6, w) in an alternating manner.

OF 1 proxn)\R(,@k)[Hk — VL (0%)]

whtt projs['wk — Tr(BkH)]
e Fixing w, prox operator is weighted ¢; norm.
e By fixing 0, the objective function F is linear in w.

e projg is a projection onto the constraint set S = {w € [0,1]” | 17w = p— h}.
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Optimization: Comparison with DC-based Approach

o Convergence history our algorithm vs. Algorithm 2 of (Khamaru &

Wainwright, 2018)*.
o Algorithm 2 of (Khamaru & Wainwright, 2018) is an optimization method for

(non-convex and non-smooth) objective functions of the form difference of

convex functions (f := g+ ¢ — h).
e Trimmed regularized problem can be formulated as a DC.

10°
T -1
g 1070 £ 1072 k., 10
| | |
=01 =107 =107
- 10712 = =
0 2000 4000 0 1000 0 500 1000 0 500 1000
Iteration Iteration Iteration

Iteration
Figure: Algorithm comparison with A € {0.5,5,10,20}.

*K. Khamaru and M. J. Wainwright. Convergence guarantees for a class of non-convex and non-smooth optimization problems. ICML, 2018
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Simulation Experiments

Incoherent Case: Support Recovery

@ Scenario 1: Incoherence condition is satisfied

=
4
ot

)/2

E; . —e— Trimmed ¢,

2 0:50 // = SCAD

é & -+- MCP

2 0.25 4 Standard ¢,

2 i

& 0.00| ¢-——g-oo e
100 250 500 1000

@ Probability of successful support recovery for Trimmed Lasso, SCAD, MCP,
and standard Lasso with (p, k) = (128, 8), (256, 16), (512, 32).
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Simulation Experiments

Incoherent Case: Stationary & log ¢2-error Comparison

@ Scenario 1: Incoherence condition is satisfied

—— Trimmed ¢,
SCAD

N —— MCP

- Standard 4

\——

—— log ly-error

log([|3* — B*l2)
log([18" = B7l2)

15000 30000 0 20000 40000 60000
[teration Count, ¢ Iteration Count, ¢

o (Left) 50 random initializations for a setting with (n,p, k) = (160, 256, 16).

o (Right) log ¢5-error comparison.
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Simulation Experiments

Nonincoherent Case: Support Recovery

@ Scenario 2: Incoherence condition violated

o Note that we need an incoherence condition in our Corollary 1.
o Interestingly, the Trimmed Lasso outperforms all the other comparison
regularizers even in this regime.

5 £0.75 4

£ 0.75 == & &

:"().70 —e— Trimmed £, - .04

< ; 205 e

2 50 M .- SCAD 50 50 :

2 - MCP 2 205

£0.25 A Standard ¢, = 0.25 -

Z0.00 2 0.00{ %4 a sl Foole2 N A

100 250 500 1000 100 250 500 1000 100 250 500 1000
n n n

@ Probability of successful support recovery for Trimmed Lasso, SCAD, MCP,
and standard Lasso with (p, k) = (128, 8), (256, 16), (512, 32).
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Simulation Experiments

Nonincoherent Case: Stationary & log ¢2-error Comparison

@ Scenario 2: Incoherence condition violated

AN —— log £y-error 3 —— Trimmed ¢,
= = \ SCAD
Q. [N N\
|2 2 . —— MCP
2o 21 o '
500 1000 0 20000 40000
Iteration Count, ¢ Iteration Count, ¢

o (Left) 50 random initializations for a setting with (n, p, k) = (160, 256, 16).

o (Right) log ¢5-error comparison.
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Simulation Experiments

Nonincoherent Case: Stationary

@ Scenario 3

o (Left) True signals and regularization parameter X are both small (Small
regime)

o Investigating the choice of the trimming parameter h (Middle: Incoherent
case, Right: Non-incoherent case).

) (n,p, k) = (1000, 128, 8) ) (n,p, k) = (160, 256, 16) ) (n,p, k) = (160, 256, 16)
£0.2 : S e £04
3 —e— Trimmed ¢ 20.15 S
[a W 2} . 2B
o A Standard ¢, > —e— Trimmed ¢, [
g £0.10 | g
20.1 g =~ SCAD 20.2
= - £ | -+~ McP =
5 5 0.05 A Standard £, =
j=3 A = 5
00 Z0.00 PN Z0.0
20 98 92 4B AM AN 0.90 092 094 096 0.98 0.90 092 094 096 0.9
p—h p—h
log A IT; ’T
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Applications to Deep Learning 1

Input Structure Recovery of Compact Neural Networks

@ We apply trimmed regularization to recover the weight structure of neural
networks as parameter support recovery.

o Motivated by the recent work of Oymak (2018)*, we consider

@ The regression model,
= o' ReLU(W*z;) with
o=1.

InPut @ Each hidden node is connected
dimension hidden to only 4 input features
p =280 dimension y P ’

h =20

* Samet Oymak. Learning Compact Neural Networks with Regularization. ICML, 2018.
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Applications to Deep Learning 1

Input Structure Recovery of Compact Neural Networks: Results

e With good initialization (small perturbation from true weight)

True Weight ly 0y Trimmed ¢,

@ With random initialization

True Weight 4y 0y Trimmed ¢,
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Applications to Deep Learning 2: Pruning Deep Networks

Before Pruning After Pruning

Pruning
Synapses

Pruning
Neurons

—

@ Pruning neurons is more computationally efficient than edge-wise pruning.
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Applications to Deep Learning: Pruning Deep Networks

Trimmed Group ¢; Regularization on Deep Networks

To encourage group sparsity on neural networks, we consider two cases:
@ Neuron sparsity (for fully-connected layers)

o Let B, € R"in*"out he 3 weight parameter, then we can enforce group-wise
sparsity via Trimmed group ¢; penalty as

Ri(6,w) = NS wi /02, + 025+ + inou

=1
@ Activation map sparsity (for convolutional layers)

o Similarly, let 8; € RCoutXCinXHXW e 5 \weight parameter, then

Cout

Ow 7>\lzw] Z j,m,n,k

m,n,k

for all possible indices (m,n, k).

with the constraint 17w = nj, — h; or Coye — hy respectively.
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Applications to Deep Learning: Pruning Deep Networks

Results on MNIST dataset

@ Comparison with vanilla group ¢; penalty vs. Trimmed group ¢, penalty on
LeNet-300-100 structure

Method Pruned Model  Error (%)
No Regularization 784-300-100 1.6
grp 41 784-241-67 1.7
grp 41,,,, h = half of original 392-150-50 1.6
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Applications to Deep Learning: Pruning Deep Networks

Bayesian Neural Networks with Trimmed ¢; Regularization

@ Most modern algorithms for network pruning are based on Bayesian
variational framework. We propose a Bayesian neural network with
Trimmed ¢; regularization regarding only 6 as Bayesian.
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Applications to Deep Learning: Pruning Deep Networks

Bayesian Neural Networks with Trimmed ¢; Regularization

@ Most modern algorithms for network pruning are based on Bayesian
variational framework. We propose a Bayesian neural network with
Trimmed ¢; regularization regarding only 6 as Bayesian.

@ By relationship between Bayesian neural networks and variational
dropout, we choose gg .« (0; ;) = N(¢i j, i j¢7 ;) as a variational
distribution.
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Applications to Deep Learning: Pruning Deep Networks

Bayesian Neural Networks with Trimmed ¢; Regularization

@ Most modern algorithms for network pruning are based on Bayesian
variational framework. We propose a Bayesian neural network with
Trimmed ¢; regularization regarding only 6 as Bayesian.

@ By relationship between Bayesian neural networks and variational
dropout, we choose gg .« (0; ;) = N(¢i j, i j¢7 ;) as a variational
distribution.

@ Combined with Trimmed ¢; regularization, the objective is

L+1
Egg.a(0) [ - LW; D)} + KL(¢¢,a W) lp(W)) +Eq, . (0) {Z ANRi(6y, wz)}

=1

ELBO
Expected Trimmed group ¢; penalty
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Applications to Deep Learning: Pruning Deep Networks

Results on MNIST dataset (Cont’ d)

o With Bayesian extensions on LeNet-300-100
o We compare with a smoothed ¢p-norm under Bayesian variational framework
proposed by Louizos et al. (2018)*

Method Pruned Model  Error (%)
£y (Louizos et al., 2018) 219-214-100 14
Lo, A sep. (Louizos et al., 2018) 266-88-33 1.8
Bayes grp 41, h = %o 219-214-100 14
Bayes grp {1, h = fo, A sep. 266-88-33 1.6
Bayes grp {1, h < fo, A sep. 245-75-25 1.7

o With Bayesian extensions on LeNet-5-Caffe

Method Pruned Model  Error (%)
£o (Louizos et al., 2018) 20-25-45-462 0.9
Lo, A sep. (Louizos et al., 2018) 9-18-65-25 1.0
Bayes grp {1, h < {o 20-25-45-150 0.9
Bayes grp {1, h = {o, X sep. 9-18-65-25 1.0
Bayes grp {1, h < fo, X sep. 8-17-53-19 1.0

* Louizos et al. Learning Sparse Neural Networks through £( Regularization. ICLR, 2018
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Concluding Remarks

o High-dimensional M -estimators with Trimmed /; penalty: Alleviate the
bias incurred by the vanilla ¢; penalty by leaving the h largest parameter
entries penalty-free.

@ Theoretical Results on support recovery and ¢5-error hold for any local
optima and are competitive with other non-convex regularizers.

o Simulation experiments demonstrated the value of approach compared to
Lasso and non-convex penalties.
o Future work:
e Trimming for other standard regularizers beyond sparsity
o Bypassing incoherence condition in corollaries
o More experiments and theories when RSC does not hold
o Investigating the use of trimmed regularization in deep models.
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THANK YQOU!
Any Questions?

Poster Session at Pacific Ballroom #186
6:30pm — 9:00pm
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