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Convergence Analysis of Local SGD with periodic averaging

Table 1: Comparison of di↵erent SGD based algorithms.
Strategy Convergence error Assumptions Com-round(T/⌧)
SGD O(1/

p
pT ) i.i.d. & b.g T

[Yu et.al.] O(1/
p
pT ) i.i.d. & b.g O(p

3
4T

1
4 )

[Wang & Joshi] O(1/
p
pT ) i.i.d. O(p

3
2T

1
2 )

RI-SGD (⌧, q) O(1/
p
pT ) +O((1� q/p)�) non-i.i.d. & b.d. O(p

3
2T

1
2 )

b.g: Bounded gradient kgik22  G
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1. Speed up not only due to larger effective 
mini-batch size, but also due to increasing 
intra-gradient diversity. 

2. Fault-tolerance. 
3. Extension to heterogeneous mini-batch size 

and possible application to federated 
optimization. 

Advantages of RI-SGD:



Faster convergence: Experiments over Image-net 
(top figures) and Cifar-100 (bottom figures)



Increasing intra-gradient diversity: Experiments over Cifar-10



Fault-Tolerance: Experiments over Cifar-10
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