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* Need to find a consensus solution in a distributed environment
e Applications:
o Parallel training of deep neural networks with N workers

* Federated Learning: learn a common ML model with intermittent
communication where each user possesses non-identical private data



Classical Parallel SGD for Non-Convex Opt

e C(Classical Parallel mini-batch SGD (PSGD) achieves o(1/4/NT)convergence
(linear speedup) with N workers.
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Skip Comm: Parallel Restarted SGD with

mOmentu m (ext from [Zhou&Cong’18][Stich’18][Yu et.al.”18][Wang&Joshi’18][Jiang&Agrawal’18])

* Skipping communication rounds so that aggregate models every | (I>1) iterations
* Generalize SGD to momentum SGD (to improve model quality)
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Parallel Restarted SGD with momentum

e Main Result: Converge as fast as PSGD with | times fewer comm
rounds

* |f workers access identical training sets, by choosing v = g

and/ = 0(—), PR-SGD-Momentum has o(1/4/NT) convergence

. . . . VN
* |f workers use non-identical training sets, by choosing ¥ = 7:

and /=0(-), PR-SGD-Momentum has 0(1/+/NT) convergence

 The results with zero momentum (reducing to PR-SGD) improves the
analysis in [Yu et.al.’18][Wang&Joshi’18][Jiang&Agrawal’18].



Experiments

Training Loss

Train ResNet56 over Cifar10 with N={2,4,8} workers. I=4;y = 0. 01
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Experiments

Train ResNet56 over Cifar10 with 8 workers. 1=4,8,16,32; periodically
decayed learning rates in [He et.al.’10]
Similar observation for Imagenent. (see supplement in our paper)

90 7 —— Classicial Parallel SGD with (Polyak's) Momentum
251 Algorithm 1 with Option | (1=4)
80 1 —— Algorithm 1 with Option | (I=8)
—— Algorithm 1 with Option | (1=16)
70 - 2.0 —— Algorithm 1 with Option | (1=32)
X
o 60 w
g 511“5—
% 50 =
d E
— 40 — 1.0 -
—— Classicial Parallel SGD with (Polyak's) Momentum
30 1 Algorithm 1 with Option | (I=4)
—— Algorithm 1 with Option | (1=8) 057
20 A —— Algorithm 1 with Option | (1=16)
—— Algorithm 1 with Option | (I=32)
10 4 | I I I I I I 0.0 -
0 25 50 75 100 125 150 175 200 0

Epochs

# of epochs jointly accessed by all workers



Extension: Distributed Momentum SGD with
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e PR-SGD-Momentum requires to average/aggregate models from all
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* This paper shows momentum SGD with decentralized communication
has O(1/4/NT) convergence. Its zero-momentum case degrades to the
results in [Lian et.al.’17].
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