
Semi-Cyclic SGD

Hubert Eichner
Google

Tomer Koren
Google

Brendan McMahan
Google

Kunal Talwar
Google

Nati Srebro



𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

SGD is great……
ෝ𝑤𝑇



Ab Az Bo Cu De Do En Er Et Fr Ge Gl

Ag Be
Da Di

Ep Es
Fu Gi

Ch Co
Dy Ef

Fa Fl
Gr Hi

By Cl Co Dr Ed El Ex Fi Fo Gm Ha Ho

𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

SGD is great……

if you run on iid (randomly shuffled) data

ෝ𝑤𝑇



𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

SGD is great……

if you run on iid (randomly shuffled) data

Cyclically varying (not fully shuffled) data

ෝ𝑤𝑇

Samples in block 𝑖 = 1. . 𝑚 are sampled from as 𝑧𝑡 ∼ 𝒟𝑖

overall distribution: 𝒟 =
1

𝑚
σ𝑖𝒟𝑖



𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

SGD is great……

if you run on iid (randomly shuffled) data

Cyclically varying (not fully shuffled) data, e.g. in Federated Learning

• Train model by executing SGD steps on user devices
when device available (plugged in, idle, on WiFi)

• Diurnal variations (e.g. Day vs night available devices; US vs UK vs India)

ෝ𝑤𝑇

Samples in block 𝑖 = 1. . 𝑚 are sampled from as 𝑧𝑡 ∼ 𝒟𝑖

overall distribution: 𝒟 =
1

𝑚
σ𝑖𝒟𝑖



𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

Samples in block 𝑖 = 1. . 𝑚 are sampled from as 𝑧𝑡 ∼ 𝒟𝑖

• Train ෝ𝑤𝑇 by running block-cyclic SGD

➔ could be MUCH slower, by an arbitrary large factor

ෝ𝑤𝑇

Samples in block 𝑖 = 1. . 𝑚 are sampled from as 𝑧𝑡 ∼ 𝒟𝑖

overall distribution: 𝒟 =
1

𝑚
σ𝑖𝒟𝑖



𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

Samples in block 𝑖 = 1. . 𝑚 are sampled from as 𝑧𝑡 ∼ 𝒟𝑖

• Train ෝ𝑤𝑇 by running block-cyclic SGD

➔ could be MUCH slower, by an arbitrary large factor

Pluralistic approach: learn different ෝ𝑤𝑖 for each block 𝑖 = 1. .𝑚

• Train each ෝ𝑤𝑖 separately on data from that block (across all cycles)

➔ could be slower/less efficient by a factor of 𝑚

ෝ𝑤2
ෝ𝑤1



𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

Samples in block 𝑖 = 1. . 𝑚 are sampled from as 𝑧𝑡 ∼ 𝒟𝑖

• Train ෝ𝑤𝑇 by running block-cyclic SGD

➔ could be MUCH slower, by an arbitrary large factor

Pluralistic approach: learn different ෝ𝑤𝑖 for each block 𝑖 = 1. .𝑚

• Train each ෝ𝑤𝑖 separately on data from that block (across all cycles)

➔ could be slower/less efficient by a factor of 𝑚

• Our solution: train ෥𝑤𝑖 using single SGD chain+“pluralistic averaging” 

➔ exactly same guarantee as if using random shuffling (no degradation)

➔ no extra comp. cost, no assumptions about 𝓓𝒊 nor relatedness

෥𝑤2෥𝑤1


