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Cyclically varying (not fully shuffled) data, e.g. in Federated Learning

• Train model by executing SGD steps on user devices
when device available (plugged in, idle, on WiFi)

• Diurnal variations (e.g. Day vs night available devices; US vs UK vs India)
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Pluralistic approach: learn different ෝ𝑤𝑖 for each block 𝑖 = 1. .𝑚

• Train each ෝ𝑤𝑖 separately on data from that block (across all cycles)

➔ could be slower/less efficient by a factor of 𝑚

ෝ𝑤2
ෝ𝑤1



𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓 𝑤𝑡 , 𝑧𝑡

Samples in block 𝑖 = 1. . 𝑚 are sampled from as 𝑧𝑡 ∼ 𝒟𝑖

• Train ෝ𝑤𝑇 by running block-cyclic SGD

➔ could be MUCH slower, by an arbitrary large factor

Pluralistic approach: learn different ෝ𝑤𝑖 for each block 𝑖 = 1. .𝑚

• Train each ෝ𝑤𝑖 separately on data from that block (across all cycles)

➔ could be slower/less efficient by a factor of 𝑚

• Our solution: train ෥𝑤𝑖 using single SGD chain+“pluralistic averaging” 

➔ exactly same guarantee as if using random shuffling (no degradation)

➔ no extra comp. cost, no assumptions about 𝓓𝒊 nor relatedness

෥𝑤2෥𝑤1


