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Optimizing with surrogate gradients

Surrogate gradient
directions that are correlated with the true gradient (but may be biased)

Example applications
® Neural networks with non-differentiable layers

® Meta-learning (where computing an exact meta-gradient is costly)
® Gradients from surrogate models (synthetic gradients, black box attacks)
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Surrogate gradient
directions that are correlated with the true gradient (but may be biased)

Zeroth-Order Guided ES First-Order

only function values, f(x) gradient information, Vf(x)
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Schematic 005 Choosing the guiding distribution
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Schematic

Guiding distribution

Choosing the guiding distribution
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UelR columns are surrogate gradients

a. hyperparameter

N: parameter dimension
K: subspace dimension
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Perturbed quadratic
Quadratic function with a bias added to the gradient
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Demo

Perturbed quadratic
Quadratic function with a bias added to the gradient
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Example applications

Unrolled optimization
Surrogate gradient from one step of BPTT

0.8 -

SGD

Distance to optimal
learning rate
o
N

Vanilla ES
Guided ES
0.0 -

0] _ 2500
lteration



Example applications

Unrolled optimization Synthetic gradients

Surrogate gradient from one step of BPTT Surrogate gradient is from a synthetic model
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Summary

Guided Evolutionary Strategies
Optimization algorithm when you only have access to surrogate gradients

Pacific Ballroom #146
Learn more at our poster

0 brain-research/guided-evolutionary-strategies

YW @niru_m



Choosing optimal hyperparameters

Optimal hyperparameter (a)
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