

Guided Evolutionary Strategies Augmenting random search with surrogate gradients

Surrogate gradient

Surrogate gradient

directions that are correlated with the true gradient (but may be biased)

Example applications

Surrogate gradient

directions that are correlated with the true gradient (but may be biased)

Example applications

Neural networks with non-differentiable layers

Surrogate gradient

directions that are correlated with the true gradient (but may be biased)

Example applications

- Neural networks with non-differentiable layers
- Meta-learning (where computing an exact meta-gradient is costly)

Surrogate gradient

directions that are correlated with the true gradient (but may be biased)

Example applications

- Neural networks with non-differentiable layers
- Meta-learning (where computing an exact meta-gradient is costly)
- Gradients from surrogate models (synthetic gradients, black box attacks)

Surrogate gradient

Surrogate gradient

Surrogate gradient

Surrogate gradient

Schematic

Schematic

Sample perturbations

$$\epsilon \sim \mathcal{N}(0, \Sigma)$$

Schematic

0.25

-08S

Sample perturbations

$$\epsilon \sim \mathcal{N}(0, \Sigma)$$

Gradient estimate

$$g = \frac{\beta}{2\sigma^2 P} \sum_{i=1}^{P} \epsilon_i \left(f(x + \epsilon_i) - f(x - \epsilon_i) \right)$$

Schematic

Choosing the guiding distribution

Standard (vanilla) ES

Identity covariance

$$\Sigma = \frac{\alpha}{n}I$$

 α : hyperparameter

n: parameter dimension

Schematic

Choosing the guiding distribution

Guided ES

Identity + low rank covariance

$$\Sigma = \frac{\alpha}{n}I + \frac{(1-\alpha)}{k}UU^T$$

 $U \in \mathbb{R}^{n \times k}$

Guiding subspace

columns are surrogate gradients

 α : hyperparameter

n: parameter dimension

k: subspace dimension

Demo

Perturbed quadratic

Quadratic function with a bias added to the gradient

Demo

Perturbed quadratic

Quadratic function with a bias added to the gradient

Demo

Perturbed quadratic

Quadratic function with a bias added to the gradient

Example applications

Unrolled optimization

Surrogate gradient from one step of BPTT

Example applications

Unrolled optimization

Surrogate gradient from one step of BPTT

Synthetic gradients

Surrogate gradient is from a synthetic model

Summary

Guided Evolutionary Strategies

Optimization algorithm when you only have access to surrogate gradients

Pacific Ballroom #146

Learn more at our poster

Choosing optimal hyperparameters

Guided ES

Identity + low rank covariance

$$\Sigma = \frac{\alpha}{n}I + \frac{(1-\alpha)}{k}UU^T$$

Optimal hyperparameter (a)

Ratio of subspace to parameter dimension $(\frac{k}{n})$