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Submodular Functions

Def. A function f : 2N → R is submodular if for all S ⊆ T ⊆ N
and x ∈ N \ T we have

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T).

• Models the property of diminishing returns

Example. f(S) is the coverage of placing sensors at locations S.
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and x ∈ N \ T we have

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T).

• Models the property of diminishing returns

Applications in machine learning.

• Document summarization
• Exemplar clustering
• Feature selection
• Graph cuts
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Submodular Maximization

Assumption. Evaluation oracle that returns f(S) in O(1) time.

Evaluation Oracle
S f(S)

Problem. Maximize f(S) such that |S| ≤ k using a small number
of adaptive rounds and oracle queries.
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Adaptivity Complexity

Def. The adaptivity of a distributed algorithm is the minimum
needed round complexity, where in each round the algorithm
can make poly(n) independent queries to the value oracle.

• Rank of partial order on queries ordered by dependence
• Models communication complexity with oracle

Example. Greedy algorithm for constrained maximization

1. Set S0 ← ∅
2. For i = 1 to k:
3. Set Si ← Si−1 ∪ {argmaxx∈N f(Si−1 ∪ {x})}
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Main Results

Problem. Submodular maximization of a non-monotone
function subject to a cardinality constraint k

Algorithm Approximation Adaptivity Queries

BFS16 1/e ≈ 0.371 O(k) O(n)

BBS18 (NeurIPS 18) 0.183 O(log2(n)) Õ(OPT2n)

CQ19 (STOC 19) 0.172 O(log2(n)) Õ(nk4)

ENV19 (STOC 19) 0.371 O(log2(n)) Õ(nk2)

FMZ19 0.039 O(log(n)) O(n log(k))

Adaptivity Hardness [BS18]. We need Ω(log(n)/ log log(n))
adaptive rounds to achieve a constant-factor approximation.
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