Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity

Matthew Fahrbach¹ Vahab Mirrokni² Morteza Zadimoghaddam² June 13, 2019

) dire 15, 2017

¹Georgia Tech ²Google

Submodular Functions

Def. A function $f: 2^N \to \mathbb{R}$ is submodular if for all $S \subseteq T \subseteq N$ and $x \in N \setminus T$ we have

$$f(S \cup \{x\}) - f(S) \ge f(T \cup \{x\}) - f(T).$$

Models the property of diminishing returns

Example. f(S) is the coverage of placing sensors at locations S.

Submodular Functions

Def. A function $f: 2^N \to \mathbb{R}$ is submodular if for all $S \subseteq T \subseteq N$ and $x \in N \setminus T$ we have

$$f(S \cup \{x\}) - f(S) \ge f(T \cup \{x\}) - f(T).$$

Models the property of diminishing returns

Applications in machine learning.

- Document summarization
- Exemplar clustering
- Feature selection
- Graph cuts

Submodular Maximization

Assumption. Evaluation oracle that returns f(S) in O(1) time.

Problem. Maximize f(S) such that $|S| \le k$ using a small number of adaptive rounds and oracle queries.

Adaptivity Complexity

Def. The adaptivity of a distributed algorithm is the minimum needed round complexity, where in each round the algorithm can make poly(n) independent queries to the value oracle.

- · Rank of partial order on queries ordered by dependence
- Models communication complexity with oracle

Adaptivity Complexity

Def. The adaptivity of a distributed algorithm is the minimum needed round complexity, where in each round the algorithm can make poly(n) independent queries to the value oracle.

Example. Greedy algorithm for constrained maximization

- 1. Set $S_0 \leftarrow \emptyset$
- 2. For i = 1 to k:
- 3. Set $S_i \leftarrow S_{i-1} \cup \{ \operatorname{arg\,max}_{x \in N} f(S_{i-1} \cup \{x\}) \}$

Main Results

Problem. Submodular maximization of a non-monotone function subject to a cardinality constraint *k*

Algorithm	Approximation	Adaptivity	Queries
BFS16	$1/e \approx 0.371$	O(k)	O(n)
BBS18 (NeurIPS 18)	0.183	$O(\log^2(n))$	$\tilde{O}(OPT^2n)$
CQ19 (STOC 19)	0.172	$O(\log^2(n))$	$\tilde{O}(nk^4)$
ENV19 (STOC 19)	0.371	$O(\log^2(n))$	$\tilde{O}(nk^2)$
FMZ19	0.039	$O(\log(n))$	$O(n\log(k))$

Adaptivity Hardness [BS18]. We need $\Omega(\log(n)/\log\log(n))$ adaptive rounds to achieve a constant-factor approximation.