
Non-monotone Submodular Maximization with
Nearly Optimal Adaptivity and Query Complexity

Matthew Fahrbach1 Vahab Mirrokni2 Morteza Zadimoghaddam2

June 13, 2019
1Georgia Tech 2Google

Submodular Functions

Def. A function f : 2N → R is submodular if for all S ⊆ T ⊆ N
and x ∈ N \ T we have

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T).

• Models the property of diminishing returns

Example. f(S) is the coverage of placing sensors at locations S.

1/4

Submodular Functions

Def. A function f : 2N → R is submodular if for all S ⊆ T ⊆ N
and x ∈ N \ T we have

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T).

• Models the property of diminishing returns

Applications in machine learning.

• Document summarization
• Exemplar clustering
• Feature selection
• Graph cuts

1/4

Submodular Maximization

Assumption. Evaluation oracle that returns f(S) in O(1) time.

Evaluation Oracle
S f(S)

Problem. Maximize f(S) such that |S| ≤ k using a small number
of adaptive rounds and oracle queries.

2/4

Adaptivity Complexity

Def. The adaptivity of a distributed algorithm is the minimum
needed round complexity, where in each round the algorithm
can make poly(n) independent queries to the value oracle.

• Rank of partial order on queries ordered by dependence
• Models communication complexity with oracle

Example. Greedy algorithm for constrained maximization

1. Set S0 ← ∅
2. For i = 1 to k:
3. Set Si ← Si−1 ∪ {argmaxx∈N f(Si−1 ∪ {x})}

3/4

Adaptivity Complexity

Def. The adaptivity of a distributed algorithm is the minimum
needed round complexity, where in each round the algorithm
can make poly(n) independent queries to the value oracle.

Example. Greedy algorithm for constrained maximization

1. Set S0 ← ∅
2. For i = 1 to k:
3. Set Si ← Si−1 ∪ {argmaxx∈N f(Si−1 ∪ {x})}

3/4

Main Results

Problem. Submodular maximization of a non-monotone
function subject to a cardinality constraint k

Algorithm Approximation Adaptivity Queries

BFS16 1/e ≈ 0.371 O(k) O(n)

BBS18 (NeurIPS 18) 0.183 O(log2(n)) Õ(OPT2n)

CQ19 (STOC 19) 0.172 O(log2(n)) Õ(nk4)

ENV19 (STOC 19) 0.371 O(log2(n)) Õ(nk2)

FMZ19 0.039 O(log(n)) O(n log(k))

Adaptivity Hardness [BS18]. We need Ω(log(n)/ log log(n))
adaptive rounds to achieve a constant-factor approximation.

4/4

