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Why is Alternating Minimization so popular?
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Many optimization problems have variables with natural partitions
Nonnegative MF Matrix sensing/completion

Tensor decomposition
Dictionary learningGames

Blind deconvolution ……EM algorithm

minimize
x,y

f(x, y)
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Why is Alternating Minimization so popular?

yk = argminy f(xk−1, y)
xk = argminx f(x, yk)

Our Approach
Provide the 2nd-order convergence to partially solve the issue of “no 
global optimality guarantee”. 

✤Simple to implement : No 
stepsize tuning


✤Good empirical performance

Advantages Disadvantages 

❖No global optimality guarantee 
for general problems


❖Only exists 1st-order 
convergence
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Why is Alternating Minimization so popular?

yk = argminy f(xk−1, y)
xk = argminx f(x, yk)

Theorem 1
Assume f is strongly bi-convex with a full-rank cross Hessian at all 
strict saddles. Then AltMin almost surely converges to a 2nd-order 
stationary point from random initialization.

Disadvantages 

❖No global optimality guarantee 
for general problems


❖Only exists 1st-order 
convergence

✤Simple to implement : No 
stepsize tuning


✤Good empirical performance

Advantages 
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Why second-order convergence is enough?

All local minima are globally optimal

No spurious local minima

[1] Jain et al. Global Convergence of Non-Convex Gradient Descent for Computing Matrix Squareroot

[2] Bhojanapalli et al. Global Optimality of Local Search for Low Rank Matrix Recovery

[3] Ge et al. Matrix Completion Has No Spurious Local Minimum

[4] Sun et al. Complete Dictionary Recovery over The Sphere

[5] Zhang et al. On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution

[6] Ge et al. Online Stochastic Gradient for Tensor Decomposition


All saddles are strict

Negative curvature

2nd-order optimal solution = globally optimal solution
Matrix factorization [1] Matrix sensing [2]

Tensor decomposition [6]Dictionary learning [4]
Matrix completion [3]

Blind deconvolution [5]
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Why second-order convergence is enough?

1st-order convergence + avoid strict saddles = 2nd-order convergence

It suffices to show alternating minimization avoids strict saddles!

All local minima are globally optimal

No spurious local minima All saddles are strict

Negative curvature

2nd-order optimal solution = globally optimal solution
Matrix factorization [1] Matrix sensing [2]

Tensor decomposition [6]Dictionary learning [4]
Matrix completion [3]

Blind deconvolution [5]
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How to show avoiding strict saddles?

A Key Result
Lee et al [1,2] use Stable Manifold Theorem [3] to 
show that iterations defined by a global diffeom 
avoids unstable fixed points.

An Improved Version (Zero-Property Theorem [4] + Max-Rank Theorem [5])
This work relaxes the global diffeom condition to show that a local 
diffeom (at all unstable fixed points) can avoid unstable fixed points.

[1] Lee et al. Gradient Descent Converges to Minimizers.

[2] Lee et al. First-order Methods Almost Always Avoid Saddle Points

[3] Shub. Global Stability of Dynamical Systems

[4] Ponomarev et al. Submersions and Preimages of Sets of Measure Zero 

[5] Bamber and Van. How Many Parameters Can A Model Have and still Be Testable 


General Recipe
(1)Construct algorithm mapping g and show it is a local diffeom (i.e., 

Show Dg is nonsingular); 

(2)Show all strict saddles of f are unstable fixed points of g; 



A Proof Sketch

{
yk = ϕ(xk−1) = argminy f(xk−1, y)
xk = ψ(yk) = argminx f(x, yk)

⟹ xk = g(xk−1) ≐ ψ(ϕ(xk−1))

Dg(x⋆) ∼ (∇2
x f(x⋆, y⋆)− 1

2 ∇2
xy f(x⋆, y⋆)∇2

y f(x⋆, y⋆)− 1
2 ) (∇2

x f(x⋆, y⋆)− 1
2 ∇2

xy f(x⋆, y⋆)∇2
y f(x⋆, y⋆)− 1

2 )
⊤

LL⊤

∇2f(x⋆, y⋆) = [
∇2

x f(x⋆, y⋆)1/2

∇2
y f(x⋆, y⋆)1/2] [

In L
L⊤ Im]

Φ

[
∇2

x f(x⋆, y⋆)1/2

∇2
y f(x⋆, y⋆)1/2]

Construct the mapping

Compute the Jacobian (use Implicit function theorem and chain rule)

Show all strict saddles are “unstable” (Connect Dg with “Schur 
complement” of the Hessian)


Finally, by using a Schur complement theorem:

∇2f(x⋆, y⋆) ⪰̸ 0 ⟺ Φ ⪰̸ 0 ⟺ Φ/I ≐ I − LL⊤ ⪰̸ 0 ⟺ ∥L∥ > 1 ⟺ ρ(Dg(x⋆)) > 1. □
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Proximal Alternating Minimization

xk = argminx f(x, yk−1) +
λ
2

∥x − xk−1∥2
2

yk = argminy f(xk, y) +
λ
2

∥y − yk−1∥2
2

Experiments on Key Assumption (Lipschitz bi-smoothness)

max{∥∇2
x f(x, y)∥,∥∇2

y f(x, y)∥} ≤ L, ∀x, y
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minimize
x,y

f(x, y)
Proximal Alternating Minimization

Theorem 2
Assume f is L-Lipschitz bi-smooth and          . Then Proximal AltMin 
almost surely converges to a 2nd-order stationary point from 
random initialization.

λ > L
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