Alternating Minimizations Converge to Second-order Optimal Solutions

Qiuwei Li¹

Joint work with Zhihui Zhu² and Gongguo Tang¹

- ¹ Colorado School of Mines
- ² Johns Hopkins University

Why is Alternating Minimization so popular?

minimize
$$f(\mathbf{x}, \mathbf{y})$$
 x,y

Many optimization problems have variables with natural partitions

Nonnegative MF

Matrix sensing/completion

Games

Dictionary learning

Blind deconvolution

Tensor decomposition

EM algorithm

• • • • • •

Why is Alternating Minimization so popular?

$$\mathbf{y}_k = \operatorname{argmin}_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y})$$

$$\mathbf{x}_k = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}_k)$$

Advantages

- Simple to implement : No stepsize tuning
- Good empirical performance

Disadvantages

- No global optimality guarantee for general problems
- Only exists 1st-order convergence

Our Approach

Provide the 2nd-order convergence to partially solve the issue of "no global optimality guarantee".

Why is Alternating Minimization so popular?

$$\mathbf{y}_k = \operatorname{argmin}_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y})$$

$$\mathbf{x}_k = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}_k)$$

Advantages

- Simple to implement : No stepsize tuning
- Good empirical performance

Disadvantages

- No global optimality guarantee for general problems
- Only exists 1st-order convergence

Theorem 1

Assume f is strongly bi-convex with a full-rank cross Hessian at all strict saddles. Then **AltMin** almost surely converges to a **2nd-order stationary point** from random initialization.

Why second-order convergence is enough?

No spurious local minima

All saddles are strict

2nd-order optimal solution = globally optimal solution

Matrix factorization [1]
Dictionary learning [4]

Matrix sensing [2]

Blind deconvolution [5]

Matrix completion [3]

Tensor decomposition [6]

- [1] Jain et al. Global Convergence of Non-Convex Gradient Descent for Computing Matrix Squareroot
- [2] Bhojanapalli et al. Global Optimality of Local Search for Low Rank Matrix Recovery
- [3] Ge et al. Matrix Completion Has No Spurious Local Minimum
- [4] Sun et al. Complete Dictionary Recovery over The Sphere
- [5] Zhang et al. On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution
- [6] Ge et al. Online Stochastic Gradient for Tensor Decomposition

Why second-order convergence is enough?

No spurious local minima

All saddles are strict

2nd-order optimal solution = globally optimal solution

Matrix factorization [1]

Dictionary learning [4]

Matrix sensing [2]

Blind deconvolution [5]

Matrix completion [3]

Tensor decomposition [6]

1st-order convergence + avoid strict saddles = 2nd-order convergence

It suffices to show alternating minimization avoids strict saddles!

How to show avoiding strict saddles?

A Key Result

Lee et al [1,2] use **Stable Manifold Theorem [3]** to show that iterations defined by a **global diffeom** avoids **unstable fixed points.**

An Improved Version (Zero-Property Theorem [4] + Max-Rank Theorem [5])

This work relaxes the global diffeom condition to show that a **local** diffeom (at all unstable fixed points) can avoid unstable fixed points.

General Recipe

- (1) Construct algorithm mapping g and show it is a local diffeom (i.e., Show Dg is nonsingular);
- (2) Show all strict saddles of f are unstable fixed points of g;
- [1] Lee et al. Gradient Descent Converges to Minimizers.
- [2] Lee et al. First-order Methods Almost Always Avoid Saddle Points
- [3] Shub. Global Stability of Dynamical Systems
- [4] Ponomarev et al. Submersions and Preimages of Sets of Measure Zero
- [5] Bamber and Van. How Many Parameters Can A Model Have and still Be Testable

A Proof Sketch

Construct the mapping

$$\begin{cases} \mathbf{y}_k = \phi(\mathbf{x}_{k-1}) = \operatorname{argmin}_{\mathbf{y}} f(\mathbf{x}_{k-1}, \mathbf{y}) \\ \mathbf{x}_k = \psi(\mathbf{y}_k) = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}_k) \end{cases} \implies \mathbf{x}_k = g(\mathbf{x}_{k-1}) \doteq \psi(\phi(\mathbf{x}_{k-1}))$$

Compute the Jacobian (use Implicit function theorem and chain rule)

$$Dg(\mathbf{x}^{\star}) \sim \underbrace{\left(\nabla_{\mathbf{x}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{-\frac{1}{2}} \nabla_{\mathbf{x}\mathbf{y}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star}) \nabla_{\mathbf{y}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{-\frac{1}{2}}\right) \left(\nabla_{\mathbf{x}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{-\frac{1}{2}} \nabla_{\mathbf{x}\mathbf{y}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star}) \nabla_{\mathbf{y}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{-\frac{1}{2}}\right)^{\mathsf{T}}}_{\mathbf{L}\mathbf{L}^{\mathsf{T}}}$$

Show all strict saddles are "unstable" (Connect Dg with "Schur complement" of the Hessian)

$$\nabla^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star}) = \begin{bmatrix} \nabla_{\mathbf{x}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{1/2} \\ \nabla_{\mathbf{y}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{1/2} \end{bmatrix} \underbrace{\begin{bmatrix} \mathbf{I}_{n} & \mathbf{L} \\ \mathbf{L}^{\top} & \mathbf{I}_{m} \end{bmatrix}}_{\nabla_{\mathbf{x}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{1/2}} \begin{bmatrix} \nabla_{\mathbf{x}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{1/2} \\ \nabla_{\mathbf{y}}^{2} f(\mathbf{x}^{\star}, \mathbf{y}^{\star})^{1/2} \end{bmatrix}$$

Finally, by using a Schur complement theorem:

$$\nabla^2 f(\mathbf{x}^*, \mathbf{y}^*) \not\succeq 0 \iff \mathbf{\Phi} \not\succeq 0 \iff \mathbf{\Phi}/\mathbf{I} \doteq \mathbf{I} - \mathbf{L}\mathbf{L}^\top \not\succeq 0 \iff \|\mathbf{L}\| > 1 \iff \rho(Dg(\mathbf{x}^*)) > 1. \square$$

Proximal Alternating Minimization

minimize
$$f(\mathbf{x}, \mathbf{y})$$

Proximal Alternating Minimization

$$\mathbf{x}_k = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}_{k-1}) + \frac{\lambda}{2} ||\mathbf{x} - \mathbf{x}_{k-1}||_2^2$$

$$\mathbf{y}_k = \operatorname{argmin}_{\mathbf{y}} f(\mathbf{x}_k, \mathbf{y}) + \frac{\lambda}{2} ||\mathbf{y} - \mathbf{y}_{k-1}||_2^2$$

Key Assumption (Lipschitz bi-smoothness)

$$\max\{\|\nabla_{\mathbf{x}}^2 f(\mathbf{x}, \mathbf{y})\|, \|\nabla_{\mathbf{y}}^2 f(\mathbf{x}, \mathbf{y})\|\} \le L, \ \forall \mathbf{x}, \mathbf{y}$$

Theorem 2

Assume f is L-Lipschitz bi-smooth and $\lambda > L$. Then Proximal AltMin almost surely converges to a **2nd-order stationary point** from random initialization.

#