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Why is Alternating Minimization so popular?
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Many optimization problems have variables with natural partitions

Nonnegative MF

Blind deconvolution Tensor decomposition

Matrix sensing/completion Games Dictionary learning
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Why is Alternating Minimization so popular?

Yi = argminy f (Xk—la Y)

X, = argmin, f(X,y;)

Advantages Disadvantages
“*Simple to implement : No “*No global optimality guarantee
stepsize tuning for general problems
*Good empirical performance *Only exists 1st-order
convergence

Our Approach

Provide the 2nd-order convergence to partially solve the issue of “no
global optimality guarantee”.
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Theorem 1

Assume f is strongly bi-convex with a full-rank cross Hessian at all
strict saddles. Then AltMin almost surely converges to a 2nd-order
stationary point from random initialization.



Why second-order convergence is enough?

No spurious local minima All saddles are strict

All local minima are globally optimal Negative curvature

2nd-order optimal solution = globally optimal solution

Matrix factorization [1] Matrix sensing [2] Matrix completion [3]
Dictionary learning [4]  Blind deconvolution [5]  Tensor decomposition [6]



Why second-order convergence is enough?

No spurious local minima All saddles are strict

All local minima are globally optimal Negative curvature

2nd-order optimal solution = globally optimal solution

Matrix factorization [1] Matrix sensing [2] Matrix completion [3]
Dictionary learning [4]  Blind deconvolution [5]  Tensor decomposition [6]

1st-order convergence + avoid strict saddles = 2nd-order convergence

It suffices to show alternating minimization avoids strict saddles!



How to show avoiding strict saddles?

A Key Result

Lee et al [1,2] use Stable Manifold Theorem [3] to
show that iterations defined by a global diffeom
avoids unstable fixed points.

An Improved Version (Zero-Property Theorem [4] + Max-Rank Theorem [5])

This work relaxes the global diffeom condition to show that a local
diffeom (at all unstable fixed points) can avoid unstable fixed points.

General Recipe

(1)Construct algorithm mapping g and show it is a local diffeom (i.e.,
Show Dg is nonsingular);
(2)Show all strict saddles of f are unstable fixed points of g;



A Proof Sketch

Construct the mapping

{Yk = ¢(X;_y) = argminy f(X;_;, y)

X, = w(y,) = argmin, f(X,Yy;) = X = g(X_p) = w(P(X_y))

Compute the Jacobian (use Implicit function theorem and chain rule)
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Show all strict saddles are “unstable” (Connect Dg with “Schur
complement” of the Hessian) o o
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Finally, by using a Schur complement theorem:

V*y)#0 < ®P#$0 < DP/I=I-LL'#0 < |L|>1 < pDg(x*)) > 1.




Proximal Alternating Minimization

minimize f(X,y)
X,y
Proximal Alternating Minimization

X, = argmin, f(X,y,_;) + EHX — Xk—l”%

, A
Yy = argminy f(x;,y) + -|ly - Yetll3

Key Assumption (Lipschitz bi-smoothness)

max{ ||V DILIV DI} < L, Vx,y

Assume f is L-Lipschitz bi-smooth and 4 > L. Then Proximal AltMin

almost surely converges to a 2nd-order stationary point from
random Iinitialization.






