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Problem setting

Regularized optimization problems of the form

min
w∈Rd

h(w) := f (w) + g(w)

f(w): loss function

• non-convex

• Lipschitz continuous gradient

• f (w) := Eξ[F (w , ξ)] or f (w) := 1
n

∑n
j=1 fj(w)

g(w): sparse regularizer

• non-smooth, non-convex

• Lipschitz continuous

• easily computable proximal operator
proxλg (w) := argmin

x∈Rd

{
1
2λ ||w − x ||22 + g(x)

}
• SCAD, MCP, log-sum penalty, capped l1 norm



Research focus

Non-asymptotic convergence results using simple first-order stochastic
methods.

Aim is to find an ε-stationary solution w in expectation,

E [dist(0, ∂h(w))] ≤ ε.



Auxiliary function of h(w)

min
w∈Rd

h(w) := f (w) + g(w)

Considered an auxiliary function

h̃λ(w) := f (w) + eλg(w),

where

eλg(w) := inf
x∈Rd

{
1

2λ
||w − x ||22 + g(x)

}
(Moreau envelope)

Using iteration wk construct a smooth majorizing function E k
λ (w) of

hλ(w), with

∇E k
λ (w) = ∇f (w) +

1

λ
(w − ζλ(wk)), ζλ(wk) ∈ proxλg (wk).



Convergence for h(w)

Use a mini-batch stochastic gradient algorithm (MBSGA) to minimize

E||∇ER
λ (wR)||2.

Lipschitz continuity of g(w) used to bound

E
[
dist(0, ∂h(proxλg (wR)))− ||∇ER

λ (wR)||2
]
.

• Also considered a variance reduced stochastic gradient algorithm
(VRSGA) for finite-sum problems.



Convergence results

min
w∈Rd

h(w) := f (w) + g(w)

For an ε-stationary point w̄ in expectation,

E [dist(0, ∂(h(w̄)))] ≤ ε.

Table: Comparison of convergence complexities obtained in (Xu et al., 2018a,b) and this paper.

Algorithm
Finite-sum

Assumption
Gradient Call
Complexity

Proximal Operator
Complexity

SSDC-SPGa × O(ε−8) O(ε−8)
SSDC-SVRGa √

O(nε−4) O(ε−4)
MBSGA × O(ε−5) O(ε−4)

VRSGA
√

O(n2/3ε−3) O(ε−3)
SSDC-SPGb × O(ε−5) O(ε−5)

SSDC-SVRGb √
Õ(nε−3) Õ(ε−3)



Experimental results

Application: Binary classification with smooth non-convex loss function
and log-sum penalty as regularizer.
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Figure: Comparison of algorithms of this paper and (Xu et al., 2018) (marked with *).
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