Simple Stochastic Gradient Methods for Non-Smooth Non-Convex Regularized Optimization

Michael R. Metel¹ Akiko Takeda^{1,2}

¹RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

² Department of Creative Informatics, Graduate School of Information Science and Technology, the University of Tokyo, Tokyo, Japan

June 12, 2019

Problem setting

Regularized optimization problems of the form

$$\min_{w \in \mathbb{R}^d} h(w) := f(w) + g(w)$$

f(w): loss function

- non-convex
- Lipschitz continuous gradient
- $f(w) := \mathbb{E}_{\xi}[F(w,\xi)]$ or $f(w) := \frac{1}{n} \sum_{j=1}^{n} f_{j}(w)$

g(w): sparse regularizer

- non-smooth, non-convex
- Lipschitz continuous
- easily computable proximal operator $\operatorname{prox}_{\lambda g}(w) := \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\lambda} ||w x||_2^2 + g(x) \right\}$
- SCAD, MCP, log-sum penalty, capped l_1 norm

Research focus

Non-asymptotic convergence results using simple first-order stochastic methods.

Aim is to find an ϵ -stationary solution \overline{w} in expectation,

$$\mathbb{E}\left[\mathsf{dist}(\mathsf{0},\partial \mathit{h}(\overline{\mathit{w}}))\right] \leq \epsilon.$$

Auxiliary function of h(w)

$$\min_{w \in \mathbb{R}^d} h(w) := f(w) + g(w)$$

Considered an auxiliary function

$$\tilde{h}_{\lambda}(w) := f(w) + e_{\lambda}g(w),$$

where

$$e_{\lambda}g(w):=\inf_{x\in\mathbb{R}^d}\left\{rac{1}{2\lambda}||w-x||_2^2+g(x)
ight\}$$
 (Moreau envelope)

Using iteration w^k construct a smooth majorizing function $E^k_\lambda(w)$ of $h_\lambda(w)$, with

$$abla E_{\lambda}^k(w) =
abla f(w) + rac{1}{\lambda}(w - \zeta^{\lambda}(w^k)), \quad \zeta^{\lambda}(w^k) \in \operatorname{prox}_{\lambda g}(w^k).$$

Convergence for h(w)

Use a mini-batch stochastic gradient algorithm (MBSGA) to minimize

$$\mathbb{E}||\nabla E_{\lambda}^{R}(w^{R})||_{2}.$$

Lipschitz continuity of g(w) used to bound

$$\mathbb{E}\left[\mathsf{dist}(0,\partial \textit{h}(\mathsf{prox}_{\lambda \textit{g}}(\textit{w}^{R}))) - ||\nabla \textit{E}_{\lambda}^{R}(\textit{w}^{R})||_{2}\right].$$

 Also considered a variance reduced stochastic gradient algorithm (VRSGA) for finite-sum problems.

Convergence results

$$\min_{w \in \mathbb{R}^d} h(w) := f(w) + g(w)$$

For an ϵ -stationary point \bar{w} in expectation,

$$\mathbb{E}\left[\mathsf{dist}(\mathsf{0},\partial(\mathit{h}(\bar{w})))\right] \leq \epsilon.$$

Table: Comparison of convergence complexities obtained in (Xu et al., 2018a,b) and this paper.

Algorithm	Finite-sum	Gradient Call	Proximal Operator
	Assumption	Complexity	Complexity
SSDC-SPG ^a	×	$O(\epsilon^{-8})$	$O(\epsilon^{-8})$
SSDC-SVRG ^a	\checkmark	$O(n\epsilon^{-4})$	$O(\epsilon^{-4})$
MBSGA	×	$O(\epsilon^{-5})$	$O(\epsilon^{-4})$
VRSGA	$\sqrt{}$	$O(n^{2/3}\epsilon^{-3})$	$O(\epsilon^{-3})$
SSDC-SPG ^b	×	$O(\epsilon^{-5})$	$O(\epsilon^{-5})$
SSDC-SVRG ^b	$\sqrt{}$	$\tilde{O}(n\epsilon^{-3})$	$\tilde{O}(\epsilon^{-3})$

Experimental results

Application: Binary classification with smooth non-convex loss function and log-sum penalty as regularizer.

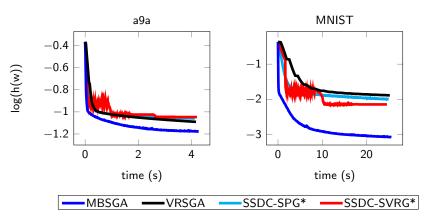


Figure: Comparison of algorithms of this paper and (Xu et al., 2018) (marked with *).

Poster session

Today 06:30 – 09:00 PM @ Pacific Ballroom #104

Bibliography

Xu, Yi, Qi Qi, Qihang Lin, Rong Jin, and Tianbao Yang (2018). "Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence". In: (a): arXiv preprint arXiv:1811.11829v1, Access date: December 3, 2018, (b): arXiv preprint arXiv:1811.11829v2.