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Stochastic Non-Convex Optimization 

• Stochastic non-convex optimization

• SGD:

• Singe node training:


• Larger B can improve the utilization of computing hardware

• Data-parallel training:  


• Multiple nodes form a bigger “mini-batch” by aggregating individual mini-batch 
gradients at each step.  


• Given a budget of gradient access, larger batch size yields fewer update/comm steps

min
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f(x) Δ= $ζ∼D[F(x; ζ)]

xt+ 1 = xt − γ 1
B ∑B

i= 1 ∇F(xt; ζi)
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Batch size for (parallel) SGD

• Question:  Should always use a BS as large as possible in (parallel) SGD?

• You may tend to say “yes” because in strongly convex case, SGD with extremely 
large BS is close to GD?

• Theoretically, No! [Bottou&Bousquet’08] [Bottou et. al.’18] shows that with limited 
budgets of stochastic gradient ҁStochastic First Order) access, GD (SGD with 
extremely large BS) has slower convergence than SGD with small batch sizes.

• Under a finite SFO access budget, [Bottou et. al.’18] shows SGD with B=1 achieves 
better stochastic opt error than GD.  

• Recall B=1 means poor hardware utilization and huge communication cost  
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Dynamic BS: reduce communication without 
sacrificing SFO convergence

• Motivating result:  
For strongly convex stochastic opt, [Friedlander&Schmidt’12] and [Bottou 
et.al.’18] show that SGD with exponentially increasing BS can achieve the 
same            SFO convergence as SGD with fixed small BS

• This paper explores how to use dynamic BS for non-convex opt such that:

• do not sacrifice SFO convergence in (parallel) SGD.  Recall (N node parallel) 
SGD with (B=1) has                  SFO convergence  

• reduce communication complexity (# of used batches) in parallel SGD

O(1/T )

O(1/ NT)
T: SFO access budge at each node


Linear speedup w.r.t. # of nodes; computation power perfectly scaled out




Non-Convex under PL condition

• PL condition:  


• Milder than strong convexity: strong convexity implies PL condition.


• Non-convex fun under PL is typically as nice as strong convex fun. 

1
2 ∥∇f(x)∥2 ≥ μ( f(x) − f*), ∀x

Brief Article

The Author

June 4, 2019

Algorithm 1 CR-PSGD(f,N, T,x1, B1, ⇢, �)

1: Input: N , T , x1 2 Rm, � , B1 and ⇢ > 1.
2: Initialize t = 1
3: while

Pt
⌧=1B⌧  T do

4: Each worker calculates batch gradient average ḡt,i =
1
Bt

PBt
j=1 F (xt; ⇣i,j).

5: Each worker aggregates gradient average ḡt =
1
N

PN
i=1 ḡt,i.

6: Each worker updates in parallel via: xt+1 = xt � �ḡt.
7: Set batch size Bt+1 = b⇢tB1c.
8: Update t t+ 1.
9: end while

10: Return: xt

1

budge of SFO access at each worker
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Non-Convex under PL condition 

• Under PL, we show using exponentially increasing batch sizes in PSGD with 
N workers has           SFO convergence with              comm rounds

• SoA            SFO convergence with             inter-worker comm rounds attained by 
local SGD in [Stich’18] for strongly convex opt only

• How about general non-convex without PL?

• Inspiration from “catalyst acceleration” developed in [Lin et al.’15][Paquette et 
al.’18] 

• Instead of solving original problem directly, it repeatedly solves “strongly convex” 
proximal minimization

O(log T )O( 1
NT )

O( 1
NT ) O( NT )



General Non-Convex Opt

• A new catalyst-like parallel SGD method
Algorithm 2 CR-PSGD-Catalyst(f,N, T,y0, B1, ⇢, �)

1: Input: N , T , ✓, y0 2 Rm, � , B1 and ⇢ > 1.
2: Initialize y(0) = y0 and k = 1.
3: while k  b

p
NT c do

4: Define h✓(x;y(k�1))
�
= f(x) + ✓

2kx� y(k�1)k2 .

5: Update y(k) via

y(k) = CR-PSGD(h✓(·;y(k�1)), N, b
p

T/Nc,y(k�1), B1, ⇢, �)

6: Update k  k + 1.
7: end while

2

strongly convex fun whose unbiased stochastic gradient is easily estimated

• We show this catalyst-like parallel SGD (with dynamic BS) has               
SFO convergence with                  comm rounds


• SoA is               SFO convergence with               inter-worker comm rounds

O(1/ NT )
O( NT log( T

N ))

O(1/ NT ) O(N3/4T3/4)



Experiments

Distributed Logistic Regression:  N=10



Experiments

Training ResNet20 over Cifar10:  N=8
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