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Bound selection

● Deterministic: Maximize a “score” function                            .
○ E.g. MM corresponds to                                  .

valid bounds
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Qualitative analysis of the solutions found by MM (figure b) and G-MM (figure c).

G-MM: Results on clustering



● We proposed G-MM, an iterative optimization framework that generalizes MM.

● MM requires bounds to touch the objective function, which leads to sensitivity to initialization.

● We show that this touching constraint is unnecessary and relax it in G-MM.

● MM measures progress w.r.t. objective values →                    is non-increasing.

● G-MM measures progress w.r.t. bound values →                    is non-increasing.

● In each iteration of G-MM, a new bound is chosen from a set of valid bounds    .
● Our experimental results, on several non-convex optimization problems, show that …

○ G-MM is less sensitive to initialization.
○ G-MM converges to solutions that have better objective value and perform better on the task.
○ G-MM can inject randomness to the optimization framework by choosing             .
○ G-MM can incorporate biases into the optimization framework by choosing                                       .

Summary


