Generalized Majorization-Minimization

Sobhan Naderi

Google Research Facebook Reality Labs

Kun He

Reza Aghajani

Stan Sclaroff

Boston University

Pedro Felzenszwalb

Brown University

(Presenter)

ICML 2019

Long Beach, CA, USA

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

$$b_t(w_{t-1}) = F(w_{t-1})$$

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

$$b_t(w_{t-1}) = F(w_{t-1})$$
 $F(w_0) \ge F(w_1) \ge \dots \ge F(w_T)$

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

Is this touching constraint necessary?

$$b_t(w_{t-1}) = F(w_{t-1})$$
 $F(w_0) \ge F(w_1) \ge \dots \ge F(w_T)$

$$\{F(w_t)\}_{t=0}^T \quad \begin{array}{ll} \text{Non-increasing} \\ \text{sequence} \end{array}$$

- An iterative framework for non-convex optimization
- Examples of MM algorithm:
 - Expectation Maximization (EM)
 - Convex Concave Procedure (CCP)

Is this touching constraint necessary?

$$b_t(w_{t-1}) = F(w_{t-1})$$
 $F(w_0) \ge F(w_1) \ge \dots \ge F(w_T)$

$$\{F(w_t)\}_{t=0}^T \quad \begin{array}{ll} \text{Non-increasing} \\ \text{sequence} \end{array}$$

Bound selection strategies:

• Stochastic: Sample uniformly from \mathcal{B}_t .

$$b_t \overset{U}{\sim} \mathcal{B}_t$$

Bound selection strategies:

• Stochastic: Sample uniformly from \mathcal{B}_t .

$$b_t \stackrel{U}{\sim} \mathcal{B}_t$$

• **Deterministic:** Maximize a "score" function $g: \mathcal{B}_t \times \mathbb{R}^d \to \mathbb{R}$.

$$b_t = \underset{b \in \mathcal{B}_t}{\operatorname{arg max}} \ g(b, w_{t-1})$$

Bound selection strategies:

• Stochastic: Sample uniformly from \mathcal{B}_t .

$$b_t \stackrel{U}{\sim} \mathcal{B}_t$$

- **Deterministic:** Maximize a "score" function $g: \mathcal{B}_t \times \mathbb{R}^d \to \mathbb{R}$.
 - \circ E.g. MM corresponds to $g(b, w_{t-1}) = -b(w_{t-1})$.

$$b_t = \underset{b \in \mathcal{B}_t}{\operatorname{arg max}} g(b, w_{t-1})$$

$$b_{t-1}(w_{t-1}) \ge b_t(w_{t-1})$$

$$b_{t-1}(w_{t-1}) \ge b_t(w_{t-1})$$

$$b_1(w_1) \ge b_2(w_2) \ge \dots \ge b_T(w_T)$$

F

Theorem 1: $\lim_{T\to\infty} b_T(w_T) = F(w_T)$

Theorem 2: $\lim_{T\to\infty} \nabla F(w_T) = \mathbf{0}$

W_0 W_1 W Non-increasing $\{b_t(w_t)\}_{t=1}^T$ sequence

$$b_{t-1}(w_{t-1}) \ge b_t(w_{t-1})$$

$$b_1(w_1) \ge b_2(w_2) \ge \cdots \ge b_T(w_T) \rightarrow F(w_T)$$

Theorem 1: $\lim_{T\to\infty} b_T(w_T) = F(w_T)$

Theorem 2: $\lim_{T\to\infty} \nabla F(w_T) = \mathbf{0}$

$$b_{t-1}(w_{t-1}) \ge b_t(w_{t-1})$$

$$b_1(w_0) = F(w_0)$$

$$F(w_0) \ge b_1(w_1) \ge b_2(w_2) \ge \dots \ge b_T(w_T) \to F(w_T)$$

G-MM: Results on clustering

Qualitative analysis of the solutions found by MM (figure b) and G-MM (figure c).

Summary

- We proposed G-MM, an iterative optimization framework that generalizes MM.
- MM requires bounds to touch the objective function, which leads to sensitivity to initialization.
- We show that this touching constraint is unnecessary and relax it in G-MM.
- MM measures progress w.r.t. objective values $\rightarrow (F(w_t))_{t=0}^T$ is non-increasing.
- G-MM measures progress w.r.t. bound values $\rightarrow (b_t(w_t))_{t=1}^T$ is non-increasing.

$$w_t = \underset{w}{\operatorname{arg\,min}} \ b_t(w)$$

- In each iteration of G-MM, a new bound is chosen from a **set** of valid bounds \mathcal{B}_t .
- Our experimental results, on several non-convex optimization problems, show that ...
 - G-MM is less sensitive to initialization.
 - G-MM converges to solutions that have better objective value and perform better on the task.
 - \circ G-MM can inject randomness to the optimization framework by choosing $b_t \overset{U}{\sim} \mathcal{B}_t$.
 - G-MM can incorporate biases into the optimization framework by choosing $b_t = \underset{b \in \mathcal{B}_t}{\operatorname{arg \, max}} \ g(b, w_{t-1}).$