DL2: Training and Querying Neural Networks with Logic

Marc Fischer, Mislav Balunović, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, Martin Vechev

finding adversarial examples using a generator [Song et al., 2018]

Deep Learning with Differentiable Logic

```
differencing neural networks
[Pei et al., 2017]
find i[32, 32, 3]
where i in [0, 1],
       class(NN1(i)) = dog,
       class(NN2(i)) = cat,
```

 $\|i - image\|_2 < 2$

finding inputs that deactivates neurons

```
find i[32, 32, 3]
where i in [0, 1],
      NN(i).l3[17] = 0,
      class(NN(i)) = cat,
      \|i - image\|_1 < 100
```

```
finding adversarial examples
```

```
[Szegedy et al., 2013]
find i[224, 224, 3]
```

```
finding adversarial examples
using a generator [Song et al., 2018]
find i[100]
where i in [-1, 1],
   class(NN(GEN(i, cat))) = dog
return GEN(i, cat)
```

```
where i in [0, 1],
      class(NN1(i)) = dog,
```

 $\|i - image\|_{\infty} < 25$

differencing neural networks


```
Deep Learning with
Differentiable Logic

find i[32, 32, 3]
where i in [0, 1],
    class(NN1(i)) = dog,
    class(NN2(i)) = cat,
    ||i - image||<sub>2</sub> < 2
```

```
differencing neural networks
[Pei et al., 2017]
find i[32, 32, 3]
where i in [0, 1],
       class(NN1(i)) = dog,
       class(NN2(i)) = cat,
```

 $\|i - image\|_2 < 2$

finding inputs that deactivates neurons

```
find i[32, 32, 3]
where i in [0, 1],
      NN(i).l3[17] = 0,
      class(NN(i)) = cat,
      \|i - image\|_1 < 100
```

```
finding adversarial examples
```

```
[Szegedy et al., 2013]
find i[224, 224, 3]
```

```
finding adversarial examples
using a generator [Song et al., 2018]
find i[100]
where i in [-1, 1],
   class(NN(GEN(i, cat))) = dog
return GEN(i, cat)
```

```
where i in [0, 1],
      class(NN1(i)) = dog,
```

 $\|i - image\|_{\infty} < 25$

```
differencing neural networks
[Pei et al., 2017]

find i[32, 32, 3]
where i in [0, 1],
    class(NN1(i)) = dog,
    class(NN2(i)) = cat,
    ||i - image||<sub>2</sub> < 2,</pre>
```


i[:8, :8, :] = image[:8, :8, :]

class(NN(i)) = cat,

 $\|i - image\|_1 < 100$

```
finding adversarial examples [Szegedy et al., 2013]
```

NN1(i).p[dog] > 0.8,

NN1(i).p[cat] < 0.1

```
finding adversarial examples
using a generator [Song et al., 2018]
find i[100]
where i in [-1, 1],
    class(NN1(GEN(i, cat))) = dog,
    class(NN2(GEN(i, cat))) = car
return GEN(i, cat)
```

```
find i[224, 224, 3]
where i in [0, 1],
        class(NN1(i)) = dog,
        ||i - image||<sub>∞</sub> < 25,
        ||i - image||<sub>∞</sub> > 5
```

DL2 Querying

Theorem: $\mathcal{L}(\varphi) = 0$ if and only if φ is satisfied

DL2 Training

Goal: φ holds for all inputs

generalizes adversarial robustness training generalizes previous work for training with constraints applicable to supervised, semi-supervised and unsupervised training

Supervised Training Example

"A car should be considered more similar to a truck than a dog."

$$\forall \boldsymbol{z} \in B_{\epsilon}(\boldsymbol{x}) \cap [0,1]^d. y = \operatorname{car} \implies \operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{truck}} > \operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{dog}} + \delta$$

Supervised Training Example

"A car should be considered more similar to a truck than a dog."

$$\forall \boldsymbol{z} \in B_{\epsilon}(\boldsymbol{x}) \cap [0,1]^d. y = \operatorname{car} \implies \operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{truck}} > \operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{dog}} + \delta$$

Supervised Training Example

"A car should be considered more similar to a truck than a dog."

$$\forall \boldsymbol{z} \in B_{\epsilon}(\boldsymbol{x}) \cap [0,1]^d. y = \operatorname{car} \implies \operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{truck}} > \operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{dog}} + \delta$$

DL2: Training and Querying Neural Networks with Logic

Querying

Training

generalizes adversarial robustness training generalizes previous work for training with constraints applicable to supervised, semi-supervised and unsupervised training

github.com/eth-sri/dl2