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Specialized DNN Processors are Ubiguitous
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Quantization is Key to Hardware Acceleration

Lower Precision - less energy and area per op
—> fewer bits of storage per data
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Data-Free Quantization

> DNN quantization techniques that require training are
discouraged by the current ML service model
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» Reasons to prefer data-free quantization:

ML providers typically cannot access customer training data
Customer is using a pre-trained off-the-shelf model
Customer is unwilling to retrain a legacy model

Customer lacks the expertise for quantization training
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Paper Summary
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— Poor quantizer resolution + Reduces quantization noise + Reduces quantization noise
due to outliers + Used in NVIDIA TensorRT + Removes outliers
— Distorts outliers — Model size overhead

» OCS improves guantization without retraining

> OCS can outperform existing methods with negligible size
overhead (<2%) in both CNNs and RNNs

» We also perform a comprehensive evaluation of different
clipping methods in literature



Outlier Channel Splitting

» OCS splits weights or activations, halving them
— (@) Duplicate node y, to halve the weight v,
— (b) Duplicate weight v, to halve the activation y,
— Inspired by Net2Net, a paper on layer transformations

T. Chen, I. Goodfellow, J. Shlens, Net2Net: Accelerating Learning via Knowledge Transfer. ICLR’16, May 2016.



Quantization-Aware Splitting
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> In the paper, we show that QA splitting preserves the
expected quantization noise on a single value



Results on CNNs

Network : Quantized Acc.

(Float Acc.) (+ vs. Best Clipping Result)
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In these results OCS is
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» OCS constrained to 2% overhead outperforms Clipping at 6-5 bits
» OCS + Clipping outperforms Clipping alone at 4 bits



Thank you!

Ritchie Zhao, Yuwel Hu, Jordan Dotzel, Zhiru Zhang.
Improving Neural Network Quantization without Retraining
using Outlier Channel Splitting. ICML, June 2019

Code available at:


https://github.com/cornell-zhang/dnn-quant-ocs

