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Fair Clustering

e Algorithmic Fairness

| &
e Common Unsupervised Learning Task l —
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e Further Implication: e.g., feature engineering



Problem Definition



Problem Definition




Problem Definition




Problem Definition




Problem Definition

e Collection of n points P in R%
e Each point is colored either red or blue
e Each cluster S has to be (r,b)-balanced

b # red points i
b < re p01-n S 1-nS < r
T # blue points in S b




Problem Definition

e Collection of n points P in R%
e Each point is colored either red or blue
e Each cluster S has to be (r,b)-balanced

b # red points i
b < re p01-n S 1-nS < r
T # blue points in S b

(3, 2)-balanced



Problem Definition
(3, 2)-balanced

e Collection of n points P in R%
e Each point is colored either red or blue
e Each cluster S has to be (r,b)-balanced

b # red points i
b < re p01-n S 1-nS < r
T # blue points in S b

(r,b)-Fair k-median: Find k centers that partition P into
(r.b)-balanced clusters s.t. average distance of points
to their centers is minimized.
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Outline of Algorithm [Chierichetti et al, NeurlPS’'17] R
I. Compute an approximately optimal fairlet decomposition  a-approx
Il. Cluster the centers of fairlets into k groups [-approx

Gheorem. The proposed algorithm is O(a + f)-approximation p

-
Limitations: 1) Quadratic runtime in step |

.

2) Only works for (t, 1)-balanced (t is an integer)
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Near Linear Time Fairlet Decomposition

1. HST-embedding of points

2. Top-down traversal +
greedy fairlet construction
\

"Theorem. O (d - logn)-approx.

for fairlet-decomposition in

\O(d-n-logn) time ) O O Q

‘I.  Runsin near-linear time /I /\\ /\\
kII. Worksforallvaluesof(r,b)J @@@O@ @@@




Empirical Results
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Runtime scales almost linearly in the number of points while
the empirical quality is as good as (Chierichetti et al., 2017)
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the empirical quality is as good as (Chierichetti et al., 2017)
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