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● Top performing DNN models: strong supervision
● Labeled data is a scarce resource
● Several alternatives to relax strong supervision



Motivation: why label noise?

4

● Top performing DNN models: strong supervision
● Labeled data is a scarce resource
● Several alternatives to relax strong supervision

Data Semi-supervised learning

Unlabeled

Labeled



Motivation: why label noise?

5

● Top performing DNN models: strong supervision
● Labeled data is a scarce resource
● Several alternatives to relax strong supervision

Data Automatic labeling (label noise)

Incorrectly labeled

Correctly Labeled



Observations
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● “Deep neural networks easily fit random labels” [1]

[1] Zhang et al., “Understanding Deep Learning Requires Re-thinking Generalization”, ICLR 2017.

Source: [1]

CIFAR-10
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● Noisy samples take longer to learn
○ “Simple patterns are learned first” [2]
○ “Small loss” [3]
○ “High learning rate prevents memorization [4]”

CIFAR-10
80% label noise
Uniform label noise
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[2] Arpit et al., “A Closer Look at Memorization in Deep Networks”, ICML 2017.
[3] Yu et al., How does disagreement help against label corruption?, ICML 2019
[4] Tanaka et al., “Joint Optimization Framework for Learning with Noisy Labels”, CVPR 2018.
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● Before label noise memorization: clean and noisy samples are (to some 
extent) distinguishable in the loss

● Two-component mixture model suits the problem
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Loss correction approach
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● Bootstrapping loss correction [5] + mixup data augmentation [6]

[5] Reed t al. “Training deep neural networks on noisy labels with bootstrapping”, ICLR 2015.
[6] Zhang et al., “mixup: Beyond Empirical Risk Minimization”, ICLR 2018.
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● Bootstrapping loss correction [5] + mixup data augmentation [6]

● Our Beta Mixture Model drives our learning approach a step further by:
○ Preventing memorization
○ Correcting noisy labels to learn from them

[5] Reed t al. “Training deep neural networks on noisy labels with bootstrapping”, ICLR 2015.
[6] Zhang et al., “mixup: Beyond Empirical Risk Minimization”, ICLR 2018.
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● Standard training (left) vs proposed training (right)
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● Original labels training (left) vs predicted labels after training (right)
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CIFAR-10 results

Code on github:  https://git.io/svE

https://git.io/fjsvE


For more details and discussions...
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Come to our poster!
(Pacific Ballroom #176)

Thanks!


