

# International Conference on Machine Learning

Long Beach, June 2019





# Unsupervised Label Noise Modeling and Loss Correction

Eric Arazo\*, Diego Ortego\*, Paul Albert, Noel O'Connor and Kevin McGuinness

eric.arazo@insight-centre.org, diego.ortego@insight-centre.org











#### Outline

- Motivation
- Observations
- Proposed method
  - Label noise modeling
  - o Loss correction approach
- Results

#### Motivation: why label noise?

- Top performing DNN models: strong supervision
- Labeled data is a scarce resource
- Several alternatives to relax strong supervision

#### Motivation: why label noise?

- Top performing DNN models: strong supervision
- Labeled data is a scarce resource
- Several alternatives to relax strong supervision

Data



Semi-supervised learning



Unlabeled

Labeled

#### Motivation: why label noise?

- Top performing DNN models: strong supervision
- Labeled data is a scarce resource
- Several alternatives to relax strong supervision

# Data

#### Automatic labeling (label noise)



Incorrectly labeled

Correctly Labeled

#### **Observations**

"Deep neural networks easily fit random labels" [1]



#### **Observations**

- Noisy samples take longer to learn
  - "Simple patterns are learned first" [2]
  - o "Small loss" [3]
  - "High learning rate prevents memorization [4]"

CIFAR-10 80% label noise Uniform label noise



- [2] Arpit et al., "A Closer Look at Memorization in Deep Networks", ICML 2017.
- [3] Yu et al., How does disagreement help against label corruption?, ICML 2019
- [4] Tanaka et al., "Joint Optimization Framework for Learning with Noisy Labels", CVPR 2018.

- Before label noise memorization: clean and noisy samples are (to some extent) distinguishable in the loss
- Two-component mixture model suits the problem





- Before label noise memorization: clean and noisy samples are (to some extent) distinguishable in the loss
- Two-component mixture model suits the problem





- Before label noise memorization: clean and noisy samples are (to some extent) distinguishable in the loss
- Two-component mixture model suits the problem





- Before label noise memorization: clean and noisy samples are (to some extent) distinguishable in the loss
- Two-component mixture model suits the problem





Bootstrapping loss correction [5] + mixup data augmentation [6]

$$\ell^* = -\delta \left[ ((1 - w_p) y_p + w_p z_p)^T \log(h) \right] - (1 - \delta) \left[ ((1 - w_q) y_q + w_q z_q)^T \log(h) \right]$$

Bootstrapping loss correction [5] + mixup data augmentation [6]

$$\ell^* = -\delta \left[ ((1 - w_p) y_p + w_p z_p)^T \log(h) \right] - (1 - \delta) \left[ ((1 - w_q) y_q + w_q z_q)^T \log(h) \right]$$

- Our Beta Mixture Model drives our learning approach a step further by:
  - Preventing memorization
  - Correcting noisy labels to learn from them

Standard training (left) vs proposed training (right)



CIFAR-10, 80% label noise, uniform label noise

Original labels training (left) vs predicted labels after training (right)





#### **Results**

#### CIFAR-10 results

| Alg./Noise level (%)    |              | 0            | 20               | 50           | 80           | 90           |
|-------------------------|--------------|--------------|------------------|--------------|--------------|--------------|
| (Reed et al., 2015)*    | Best         | 94.7         | 86.8             | 79.8         | 63.3         | 42.9         |
|                         | Last         | 94.6         | 82.9             | 58.4         | 26.8         | 17.0         |
| (Patrini et al., 2017)* | Best         | 94.7         | 86.8             | 79.8         | 63.3         | 42.9         |
|                         | Last         | 94.6         | 83.1             | 59.4         | 26.2         | 18.8         |
| (Zhang et al., 2018)*   | Best<br>Last | 95.3<br>95.2 | <b>95.6</b> 92.3 | 87.1<br>77.6 | 71.6<br>46.7 | 52.2<br>43.9 |
| M-DYR-H                 | Best         | 93.6         | 94.0             | 92.0         | 86.8         | 40.8         |
|                         | Last         | 93.4         | <b>93.8</b>      | 91.9         | 86.6         | 9.9          |
| MD-DYR-SH               | Best         | 93.6         | 93.8             | 90.6         | 82.4         | 69.1         |
|                         | Last         | 92.7         | 93.6             | 90.3         | 77.8         | 68.7         |

| Algorithm             | Architecture | Noise level (%) |      |      |      |  |
|-----------------------|--------------|-----------------|------|------|------|--|
| Aigorumi              | Arcintecture | 20              | 40   | 60   | 80   |  |
| (Jiang et al., 2018b) | WRN-101      | 92.0            | 89.0 | -    | 49.0 |  |
| (Ma et al., 2018)     | GCNN-12      | 85.1            | 83.4 | 72.8 | -    |  |
| (Ren et al., 2018)    | WRN-28       | -               | 86.9 | -    | -    |  |
| (Wang et al., 2018b)  | GCNN-7       | 81.4            | 78.2 | -    | -    |  |
| M-DYR-H               | PRN-18       | 94.0            | 92.8 | 90.3 | 46.3 |  |
| MD-DYR-SH             | PRN-18       | 93.8            | 92.3 | 86.1 | 74.1 |  |

Code on github: <a href="https://git.io/fjsvE">https://git.io/fjsvE</a>

#### For more details and discussions...

Come to our poster! (Pacific Ballroom #176)

Thanks!

