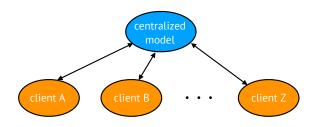
Agnostic federated learning

Mehryar Mohri^{1,2}, Gary Sivek¹, Ananda Theertha Suresh¹

¹Google Research, ²Courant Institute

June 11, 2019

Federated learning scenario [McMahan et al., '17]



- Data from large number of clients (phones, sensors)
- Data remains distributed over clients
- Centralized model trained based on data

What is the loss function?

Standard federated learning

Setting

- Merge samples from all clients and minimize loss
- Domains: clusters of clients
- ▶ Clients belong to p domains: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_p$

Training procedure

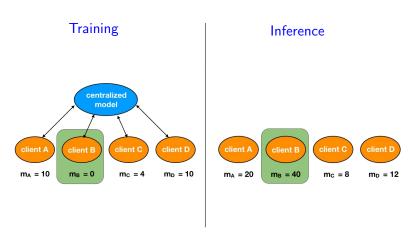
- ▶ $\hat{\mathbb{D}}_k$: empirical distribution of \mathbb{D}_k with m_k samples
- $ightharpoonup \hat{\mathcal{U}}$: uniform distribution over all observed samples

$$\hat{\mathcal{U}} = \sum_{k=1}^{p} \frac{m_k}{\sum_{i=1}^{p} m_i} \hat{\mathcal{D}}_k$$

Minimize loss over uniform distribution

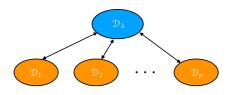
$$\min_{h\in\mathcal{H}}\mathcal{L}_{\hat{\mathcal{U}}}(h)$$

Inference distribution



Inference distribution is not same as the training distribution Permissions, hardware compatibility, network constraints

Agnostic federated learning



- Learn model that performs well over any mixture of domains
- λ is unknown and belongs to $\Lambda \subseteq \Delta_p$
- Minimize the agnostic loss

$$\min_{h \in \mathcal{H}} \max_{\lambda \in \Lambda} \mathcal{L}_{\overline{\mathbb{D}}_{\lambda}}(h)$$

Fairness implications

Theoretical results

Generalization bound

Asume \mathcal{L} is bounded by M. For any $\delta > 0$, with probability at least $1 - \delta$, for all $h \in \mathcal{H}$ and $\lambda \in \Lambda$,

$$\mathcal{L}_{\mathcal{D}_{\lambda}}(h) \leq \mathcal{L}_{\overline{\mathcal{D}}_{\lambda}}(h) + 2\mathfrak{R}_{\mathbf{m}}(\mathfrak{S}, \lambda) + M\epsilon + M\sqrt{\frac{\mathfrak{s}(\lambda \parallel \overline{\mathbf{m}})}{2m}}\log\frac{|\Lambda_{\epsilon}|}{\delta}$$

- $ightharpoonup \mathfrak{R}_{\mathbf{m}}(\mathfrak{G},\lambda)$: weighted Rademacher complexity
- $\mathfrak{s}(\lambda \parallel \overline{\mathbf{m}})$: skewness parameter $1 + \chi^2(\lambda, \mathbf{m})$
- Regularization based on generalization bound

Efficient algorithms?

Stochastic optimization as a two player game

Algorithm STOCHASTIC-AFL

Initialization: $w_0 \in \mathcal{W}$ and $\lambda_0 \in \Lambda$.

Parameters: step size $\gamma_w > 0$ and $\gamma_\lambda > 0$.

For t = 1 to T:

- 1. Stochastic gradients: $\delta_w L(w_{t-1}, \lambda_{t-1})$ and $\delta_\lambda L(w_{t-1}, \lambda_{t-1})$
- 2. $w_t = \text{Project}(w_{t-1} \gamma_w \delta_w L(w_{t-1}, \lambda_{t-1}), \mathcal{W})$
- 3. $\lambda_t = \text{Project}(\lambda_{t-1} + \gamma_{\lambda} \delta_{\lambda} \mathsf{L}(w_{t-1}, \lambda_{t-1}), \Lambda)$

Output:
$$w^A = \frac{1}{T} \sum_{t=1}^{T} w_t$$
 and $\lambda^A = \frac{1}{T} \sum_{t=1}^{T} \lambda_t$

Results

- ▶ $1/\sqrt{T}$ convergence
- Extensions to stochastic mirror descent
- ► Experimental validation of the above results

