Sublinear Quantum Algorithms for Training Linear and Kernel-based Classifiers

Tongyang Li, Shouvanik Chakrabarti, Xiaodi Wu

arXiv:1904.02276

ICML 2019

Why Quantum Machine Learning?

- ▶ Quantum machine learning is becoming more and more relevant:
 - Theoretical physics has motivated many ML models (Ex. Boltzmann machine, Ising model, Langevin dynamics, etc.)
 - Classical ML techniques can be applied to quantum problems.
 - Quantum computers give speedup for training models.
 -

Why Quantum Machine Learning?

- ▶ Quantum machine learning is becoming more and more relevant:
 - Theoretical physics has motivated many ML models (Ex. Boltzmann machine, Ising model, Langevin dynamics, etc.)
 - Classical ML techniques can be applied to quantum problems.
 - Quantum computers give speedup for training models.
 - _
- ▶ Quantum computers are developing fast, having 50-100 qubits now:

Maryland & IonQ

IBM

Google

Noisy, intermediate-scale quantum computers (NISQ); practical quantum computers to come in 5-10 years

Our Contribution

A promising quantum ML application: classification

Merits of our quantum classifier

▶ Near-term implementation: Highly classical-quantum hybrid with the minimal quantum part; suitable for NISQ computers.

Merits of our quantum classifier

- ▶ Near-term implementation: Highly classical-quantum hybrid with the minimal quantum part; suitable for NISQ computers.
- ▷ Composability: Purely classical output, suitable for end-to-end machine learning applications.

Merits of our quantum classifier

- ▶ Near-term implementation: Highly classical-quantum hybrid with the minimal quantum part; suitable for NISQ computers.
- ▷ Composability: Purely classical output, suitable for end-to-end machine learning applications.
- ▷ Generality: The classifier can be kernelized.

Main Results

Given n data points with dimension d, our quantum algorithms train classifiers for the following problems with complexity $\tilde{O}(\sqrt{n} + \sqrt{d})$:

- \triangleright Linear classification: $X^{\top}w$
- \triangleright Minimum enclosing ball: $||w X||^2$
- \triangleright ℓ_2 -margin SVM: $(X^\top w)^2$
- ightharpoonup Kernel-based classification: $\langle \Psi(X), w \rangle$, where $\Psi = \text{polynomial kernel}$ or Gaussian kernel.

The optimal classical algorithm runs in $\tilde{\Theta}(n+d)$ (Clarkson et al. '12).

▶ Standard quantum input: coherently access the coordinates of data, like a Schrödinger's cat: $\frac{1}{\sqrt{2}}$ $+\frac{1}{\sqrt{2}}$

- ▶ **Speed-up:** The classical $\tilde{\Theta}(n+d)$ optimal algorithm by Clarkson et al. uses a primal-dual approach:
 - \triangleright Primal: O(n) by multiplicative weight updates.
 - \triangleright Dual: O(d) by online gradient descent.

Quantum: quadratic speed-ups for both the primal and dual.

- ▶ **Speed-up:** The classical $\tilde{\Theta}(n+d)$ optimal algorithm by Clarkson et al. uses a primal-dual approach:
 - \triangleright Primal: O(n) by multiplicative weight updates.
 - \triangleright Dual: O(d) by online gradient descent.

Quantum: quadratic speed-ups for both the primal and dual.

▶ **Optimality:** We prove quantum lower bounds $\Omega(\sqrt{n} + \sqrt{d})$, meaning that our quantum algorithms are optimal.

Thank you!

More info: #171 at poster session

arXiv:1904.02276