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Why Quantum Machine Learning?

I Quantum machine learning is becoming more and more relevant:

- Theoretical physics has motivated many ML models (Ex.
Boltzmann machine, Ising model, Langevin dynamics, etc.)

- Classical ML techniques can be applied to quantum problems.

- Quantum computers give speedup for training models.

- · · · · · ·

I Quantum computers are developing fast, having 50-100 qubits now:

Maryland & IonQ IBM Google

Noisy, intermediate-scale quantum computers (NISQ); practical
quantum computers to come in 5-10 years
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Our Contribution

A promising quantum ML application: classification
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Merits of our quantum classifier

. Near-term implementation: Highly classical-quantum hybrid
with the minimal quantum part; suitable for NISQ computers.

. Composability: Purely classical output, suitable for end-to-end
machine learning applications.

. Generality: The classifier can be kernelized.
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Main Results

Given n data points with dimension d, our quantum algorithms train
classifiers for the following problems with complexity Õ(

√
n +
√
d):

. Linear classification: X>w

. Minimum enclosing ball: ‖w −X‖2

. `2-margin SVM: (X>w)2

. Kernel-based classification: 〈Ψ(X), w〉, where Ψ = polynomial kernel
or Gaussian kernel.

The optimal classical algorithm runs in Θ̃(n + d) (Clarkson et al. ’12).



Highlights of Our Quantum Algorithm

I Standard quantum input: coherently access the coordinates of

data, like a Schrödinger’s cat:

I Speed-up: The classical Θ̃(n + d) optimal algorithm by
Clarkson et al. uses a primal-dual approach:

. Primal: O(n) by multiplicative weight updates.

. Dual: O(d) by online gradient descent.

Quantum: quadratic speed-ups for both the primal and dual.

I Optimality: We prove quantum lower bounds Ω(
√
n +
√
d),

meaning that our quantum algorithms are optimal.
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Thank you!

More info: #171 at poster session
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