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motivation: a tale
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McBoatfaces are expensive
What is the most ship-efficient protocol to reliably test whether the
distribution of temperatures matches the one on record?
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distributed inference



the setting: “simultaneous communication protocol” (smp)

∙ an inference task P over k-ary distributions
∙ an unknown k-ary distribution p
∙ one centralized “referee” R who needs to solve P on p
∙ communication constraints represented by the set of “allowed
channels”W = {W : [k]→ {0, 1}ℓ}

∙ n players, each choosing a channel W ∈ W
∙ each player independently gets one sample x from p and sends
a message y = W(x) to R

Question

As a function of k, ℓ, and all relevant parameters of P , what is
the number of players n required?
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the setting, cont’d
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the setting, cont’d

∙ if ℓ ≥ log2 k, trivial (no constraints)
∙ Inference tasks: density estimation, parameter estimation,
functional estimation, hypothesis testing/property testing…

∙ Different resources: public-coin, private-coin
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public and private coins

Public-coin protocols players share a common random seed (e.g.,
broadcast by the server)
⇝ (W1, . . . ,Wn) jointly randomized

Private-coin protocols players have their own randomness only
⇝ (W1, . . . ,Wn) independent

In both cases, no communication between players.
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enough with the fancy “p”... what are we talking about anyway?

Focused on two specific fundamental* inference tasks:

Distribution Learning (estimation)
Must output: p̂ s.t. ℓ1(p, p̂) ≤ ε

(and be correct on any p with probability at least 2/3)

Uniformity Testing (goodness-of-fit)
Must decide: p = uk (uniform), or ℓ1(p,uk) > ε?

(and be correct on any p with probability at least 2/3)

* “If we can make it here, we can make it anywhere.”
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distribution learning and uniformity testing

What is known without local constraints:

Task P n

Distribution learning k
ε2

Uniformity testing
√
k

ε2

What happens with them? And does public randomness help then?
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distribution learning and uniformity testing

Our results with local constraints:

Task P n (private-coin) n (public-coin)

Distribution learning k
ε2 ·

k
2ℓ

k
ε2 ·

k
2ℓ

Uniformity testing
√
k

ε2 ·
k
2ℓ

√
k

ε2 ·
√

k
2ℓ
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plan for the talk

1. Private-Coin Swiss Army Knife: “Simulate-and-Infer”
2. Public-Coin Uniformity Testing: “Minimally Contracting Hashing”
3. Conclusion
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“simulate-and-infer”



one approach to solve it all

Key Observation
If the referee can simulate independent samples from p using the
messages from the players, then it can do anything.

Begging the question
Can the referee simulate independent samples from p using the
messages from the players?
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one approach to solve it all…
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no approach to solve it all?

Theorem
∀k, ℓ < log k, there exists no SMP with ℓ bits of communication per
player for distributed simulation over [k] with any finite number of
players. (Even allowing public-coin and interactive protocols.)

Proof.
By contradiction, […] pigeonhole principle […].
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one approach to solve it all!

Theorem
∀k, ℓ ≥ 1, there exists a private-coin protocol with ℓ bits of
communication per player for distributed simulation over [k], with
expected number of players O(k/2ℓ ∨ 1).
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Algorithm 1 Distributed Simulation for ℓ = 1: basic version
Require: n = 2k players, each with an i.i.d. sample from unknown p
1: for 1 ≤ i ≤ n do
2: players (2i− 1) and 2i send one bit: whether their sample is i.
3: R receives these n = 2k bits M1, . . . ,Mn.
4: if exactly one of the bits M1,M3, . . . ,M2k−1 is equal to one, say the

bit M2i−1, and the corresponding bit M2i is zero, then R outputs
X̂ = i;

5: else R outputs ⊥ (abort).

Then ∀i ,Pr[X̂ = i] = pi · (1− pi) ·
∏
j̸=i

(1− pj) = pi ·
k∏

j=1

(1− pj) ∝ pi
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one approach to solve it all!

Corollary (Informal)
For any inference task P over k-ary distributions with sample
complexity s in the non-distributed model, there is a private-coin
protocol for P , with ℓ bits of communication per player, and
n = O(s · k/2ℓ) players.

Illustration ©Dami Lee
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one approach to solve it all!

Corollary (Distribution Learning)
∀k, ℓ ≤ log2 k, there is a private-coin protocol for learning k-ary
distributions with ℓ bits per player, and n = O( k2

2ℓε2 ) players.

Corollary (Uniformity Testing)
∀k, ℓ ≤ log2 k, there is a private-coin protocol for testing uniformity
over [k] with ℓ bits per player, and n = O( k3/22ℓε2 ) players.
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one approach to really, really solve it all?

Natural Question
Is this “simulate-and-infer” approach optimal?

Answer
Not if one allows public randomness!
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“minimally contracting hashing”



distributed uniformity testing with public coins

Theorem (Upper Bound)
∀k, ℓ ≤ log2 k, there is a public-coin protocol for testing uniformity
over [k] with ℓ bits per player, and n = O

(
k

2ℓ/2ε2

)
players.
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the idea: random partition

Theorem (ℓ2 contraction)
Choose u.a.r. a balanced partition Π of [k] in L parts, and let pΠ be
the distribution induced by p on Π. Then

Pr
Π
[ℓ1(pΠ,uL) ≥ Ω(

√
L/k)ℓ1(p,uk)] ≥ Ω(1)

Proof.
Technical (and more general). Dealing with dependencies when
computing second and fourth moments + Paley–Zygmund.

(This is tight).
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the algorithm

Apply with L := 2ℓ, choosing a common random Π using public coins.
Test pΠ with ε′ :=

√
L/kε:

√
L

ε′2
=

√
k

2ℓ/2ε2
.

Repeat in parallel to amplify probability. □
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Algorithm 3 ℓ-bit public-coin protocol for uniformity testing.
Require: Parameter ε ∈ (0, 1), n players, each with an i.i.d. sample

from unknown p
1: Set L← 2ℓ
2: Players use independent public coins to sample a random parti-

tion (S1, . . . , SL) of [k] with equal-sized parts.
3: Upon observing the sample Xj, player j sends

Mj ←
L∑

b=1

b1[Xj ∈ Sb]

(which part the sample fell in) ▷ log2 L = ℓ bits
4: R obtains n independent samples from p′ := (p(S1), . . . ,p(SL)) on

[L] and tests if p′ is uL or (ε/
√
L)-far from uniform in ℓ2 ▷ Uses a

non-distributed ℓ2 test.
5: R outputs what the ℓ2 test outputs.

+ repeat in parallel.
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summary

∙ Simple.
∙ ℓ2/χ2 contraction theorem: very general.
∙ Randomness-hungry: O(kℓ) random bits (Can improve to
O(log k) using 4-wise independent only!)
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distribution learning and uniformity testing (recap)

With local communication constraints (upper bounds):

Task P n (private-coin) n (public-coin)

Distribution learning k
ε2 ·

k
2ℓ

k
ε2 ·

k
2ℓ

Uniformity testing
√
k

ε2 ·
k
2ℓ

√
k

ε2 ·
√

k
2ℓ
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conclusion



in passing: that’s optimal.

In different work ([ACT19], to appear in COLT’19), we provide a general
lower bound framework.
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conclusion

∙ Framework for inference problems with communication
constraints over discrete distributions: generalizes to other
constraints [ACFT19]

∙ First work on distributed testing; optimal protocols for
public-coin and private-coin uniformity testing in all settings
considered

∙ Simple algorithms: should work well in practice?
∙ Many questions and directions to explore: several samples,
functional estimation, more trade-offs…
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Thank you

Illustration ©Dami Lee
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