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An MCTS setting

MDP with starting state xp € X, action space A

n interactions: At time t playing a; in x; leads to
Deterministic dynamics g: x;11 = g(x, at),
Reward: ri(x:, a;) + &+ with €; being the noise
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Objective: Recommend action a(n) that minimizes

= max Q*(x,a) — Q*(x, a(n)) simple regret
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An MCTS setting

MDP with starting state xp € X, action space A

n interactions: At time t playing a; in x; leads to
Deterministic dynamics g: x;11 = g(x, at),
Reward: ri(x:, a;) + &+ with €; being the noise

Objective: Recommend action a(n) that minimizes

= max Q*(x,a) — Q*(x, a(n)) simple regret
ac

where Q*(x, a) £ r(x,a) +sup; > v r(xe, m(xt))

Assumption: r; € [0, ] and |e¢| < b

Approach: Trying to explore without the parameters and b
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OLOP (Bubeck and Munos, 2010)

OLOP implements Optimistic Planning using Upper Confidence

Bound (UCB) on the Q value of a sequence of q actions ay, ..., ag:

AUCB R h 1 79+l
t (al:q) = E i rh(t) + b +
T,,(t) 1—~
h=1 —_——

unseen reward

estimation of observed reward
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OLOP (Bubeck and Munos, 2010)

OLOP implements Optimistic Planning using Upper Confidence

Bound (UCB) on the Q value of a sequence of q actions ay, ..., ag:

AUCB R h 1 79+l
e ~M"(t ~"h
£ (a1q) E )"rh(t) + 1 . (0) + 1—5
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unseen reward

estimation of observed reward

in optimization under a fixed budget n, excellent strategies
allocate samples to actions without knowing or b
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Tree Search

L’ Q(Xs)=ro3+Yrss+Y>rse
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L Q(Xe)=ro3+Yr3s+Yrse

This is a zero order optimization!
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Black-box optimization: use the partitioning
to explore f (uniformly)
3 A
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Zipf exploration: Open best ; cells at depth h
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Noisy case

> X

e need to pull more each x to limit uncertainty

e tradeoff: the more you pull each x the shallower you can

explore



Noisy case: StroquOOL (Bartlett et al. 2019)

At depth h:
e order the cells by decreasing value and

e open the i-th best cell with m = /- estimations

h




Black-box optimization vs planning:
Reuse of samples and v

Optimization Planning
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Lower regret for planning! (Bubeck & Munos 2010)
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Black-box optimization vs planning:
Reuse of samples and v

Optimization Planning
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Lower regret for planning! (Bubeck & Munos 2010)
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Black-box optimization vs planning:
Reuse of samples and v

Optimization Planning
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Lower regret for planning! (Bubeck & Munos 2010)
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Black-box optimization vs planning:
Reuse of samples and v

Optimization
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Planning
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Lower regret for planning! (Bubeck & Munos 2010)
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Black-box optimization vs. planning:
Reuse samples and take advantage of ~

Uniform exploration Zipf exploration

h=0 | lk

Bubeck & Munos: Only for uniform strategies ...
We figured the amount the samples needed!
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Uniform exploration Zipf exploration
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Bubeck & Munos: Only for uniform strategies ...
We figured the amount the samples needed!
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P1aTyP00S

The power of P1aTyP00S

e implements Zipf exploration for MCTS Stroqu0OL,

e explicitly pulls an action at depth h+ 1, v times less than
action at depth h, (Q*(x, a) = r(x,a) +sup, >_ vir(xe, 7(xt)),

e does not use UCB & no use of and b,)
e improves over OLOP with adaptation to low noise and

additional unknown smoothness

e gets exponential speedups when no noise is present!
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