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Recurrent Neural Nets (RNNs)

= Model temporal and sequential data (RL, audio synthesis, language
modelling,...)

= One of the key research challenges:
Learn Long-Term dependencies
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Training RNNs

Truncated Backprop Trough Time (TBPTT)

(Williams & Peng, 1990)

Output

Input

hidden
state

= Introduces arbitrary Truncation Horizon — no longer term dependencies

= Parameter Update Lock during forward & backward pass
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Forward Computing Gradients t looks like you
Real Time Recurrent Learning (RTRL) (wiliams & Zipser, 1989) want to do RTRL
dh nxn?
dht Gy = d—("; eR
Forward compute (G; = ——  with recurrence Gt+1 — Hth + Ft
d@ Gt+1 — Hth + Ft

= Untruncated Gradients
= Memory is independent of sequence length

= Online parameter updates (no update lock)
BUT: Need n* Runtime and n® Memory (for n hidden units) — infeasible
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Approximate RTRL to save time & space t looks like you
Online Recurrent Optimization (UORO) (Tallec & Ollivier, 2017) want to do RTRL
dht nxn?
G“ZESGR
= lIdea: Don't store G, precisely, but approximately Gyuy = HG, + F,
G ~ ur ® u;t |

nx1 1 X n?

and unbiasedly approximate recurrence equation.

- Memory: n?
- Runtime: n®
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Does it work? Part |
UORO (Tallec & 0llivier, 2017) and KF-RTRL (Mujika et al., 2018)
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Does it work? Part Il

Provably optimal approximation — Optimal Kronecker-Sum (OK)
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What to remember

It looks like you
_ tinterested i
= Truncated BPTT has problems (truncation, update lock) RTRL.
Have a look at
= RTRL as online & untruncated alternative, but too costly Poster #166.
= Our OK approx of RTRL reduces costs by factor n \w
= No performance loss ) o
= Break update lock — faster convergence Ui
= Theoretically optimal (for certain class of approx)

= Still need to reduce computational costs

Memory Runtime Unbiased&Online

RTRL n> ot oo
rOK rn*>  m® oo
TBPTT-T Tn  Tn? X

Department for Computer Science, D-INFK Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning |
Online & Untruncated Gradients for RNNs



	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8

