Anytime Online-to-Batch, Optimism, and
Acceleration

Ashok Cutkosky
Google Research

Stochastic Optimization

First-Order Stochastic Optimization
Find the minimum of some convex function F : W — R using a
stochastic gradient oracle: given w we can obtain a random variable

g where E[g] = VF(w).

Example: Stochastic Gradient Descent

A popular algorithm is gradient descent:

W]:O

Wit = Wi — N8t

Example: Stochastic Gradient Descent

A popular algorithm is gradient descent:

W]:O

Wit = Wi — N8t

How should we analyze its convergence?

Online Optimization

Fort=1...T,repeat:
1. Learner chooses a point w;.

2. Environment presents learner with a gradient g; (think
3. Learner suffers loss (g, wy).

The objective is minimize regret:

T

RT(W*):Z (8 we) — (8 wi)

t=1
loss suffered benchmark loss

Back to Gradient Descent

Wit = Wr — 18t

Simplest analysis chooses 7; o< 1/+/T, but can also do more

complicated things like 17, o ————.
P N S SITFTE

Back to Gradient Descent

Wit = Wr — 18t

Simplest analysis chooses 7; o< 1/+/T, but can also do more

complicated things like 1; x ———— These yield
P N S SITFTE Y
Rr(we) < [lwilV'T
=
>l
t=1

Rr(wi) < [lwall

Back to Gradient Descent

Wit = Wr — 18t

Simplest analysis chooses 7; o< 1/+/T, but can also do more

complicated things like 1; x ———— These yield
P N S SITFTE Y

Rr(wi) < [|wil | VT

-
> lel?
t=1

We want to use regret bounds to solve stochastic optimization.

Rr(wi) < [lwall

What We Hope Happens

What Could Happen Instead

Online-to-Batch Conversion

» Run an online learner for T steps on gradients E[g] = VF(w;).
> Pickw =137 w.

> EIF(#) - F(w)] < 2]

Online-to-Batch Conversion

v

Run an online learner for T steps on gradients E[g] = V F(wy).
Pick w =137, we.

A Rr(wx
E[F(#) — F(w,)] < ERrlw)

v

v

-
For example: lwellV2 e lgell® XT:’:1 el o(1/V/T).

v

Averages Converge

Something That Could Be Better

» The conversion is not “anytime”: you must stop and average in
order to get a convergence guarantee.

> The iterates w; are still not well-behaved. For example,
||V F(wr)|| may be much larger than ||V F(W)]|.

Simple Fix

Just evaluate gradients at running averages!
> letxy =130 W
> Let g; be stochastic gradient at x;.

> Send g; to online learner and get wy1.

Using Running Averages

Notation Recap

> x;: where we evaluate gradients g;.

> wy: iterate of online learner (now exists only for analysis).
T

> Rr(wi) = 20— (86 we — wa).

No longer clear what the relationship is between Ry and the original
loss function F since g; is no longer a gradient at w;.

Online-To-Batch is unchanged

Theorem
Define

;

RT(X*) = Z(atgt, Wy — X*>
t=1
X 25:1 QWi
. =
25:1 &

Then for all x, and all T,

E[F(x7) — F(x)] < E [Rr(x.)]

ZtT=1 Ot

Proof Sketch

Suppose a; = 1 for simplicity.

<E

E [Z F(x) — F(x)

t=1

<E

e

L&t

(&t Xt — X*)]

1

]~

) + (8 W — Xy)
(x+)
RT Xx

<gl‘a

Xt — Wt
——"

t (t—1 (Xt71—X[)

1

~

RT(X*) +

]~

(t=1)(F(xe—1) - F(Xt))]

t=1

Subtract ZtT:1 F(x;) from both sides, and telescope.

Stability

It’s clear that F(x;) — F(xx). But (in a bounded domain) we also
have:

i — 3 =) oy

Dimq Qi

In contrast, the iterates of the base online learner are less stable:
w; — wi_1 = O(1/+/t) usually (because learning rate 1; oc 1/4/%).

An Algorithm That Likes Stability

Optimistic online learning algorithms can obtain [RS13; HK10;
MY16]:

-
Rr(wy) < Z 18 — g1l
t=1

» This algorithm does better if the gradients are stable.

An Algorithm That Likes Stability

Optimistic online learning algorithms can obtain [RS13; HK10;
MY16]:

-
Rr(wy) < Z 18 — g1l
t=1

» This algorithm does better if the gradients are stable.

» When F is smooth, then gradient stability is implied by iterate
stability!

Using Optimism with Stability

> With previous conversion, we might hope that
w; — w—q = O(1/+/t). This implies

1 o
F(ir) — Fx)] <0 = + =
B[F(on) -] <0 (747
» In the new conversion, g — gr—1 =~ x¢ — x;—1 = O(1/t), so we
can do much better.

Faster Rates with Optimism

Theorem
Suppose

.
Rr(x.) < Z ofllgr — g2
t=1

Set vy = t for all t. Suppose each g; has variance at most 0, and F is
L-smooth. Then

ElFG) - Al < 0 (754)

Acceleration

The optimal rate is

E[F(xr) = F(x)] <

L
2

+

s

Acceleration

The optimal rate is

L o
E[F(x7) = F(x)] < o5 + NG
> A small change to the algorithm can get this rate too.
> The algorithm does not know L or o.

> Unfortunately, the algebra no longer fits on a slide.

Online-to-Batch Summary

> Evaluate gradients at running averages.
> Keeps the same convergence guarantee, but is anytime.

> Stabilizes the iterates — faster rates on smooth problems.

Online-to-Batch Summary

> Evaluate gradients at running averages.
> Keeps the same convergence guarantee, but is anytime.

> Stabilizes the iterates — faster rates on smooth problems.

Thank you!

