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Setting and notation

@ Markov decision process (MDP)
observed states x € S,
discrete actions a € {1, ..., A},
unknown costs c(x, a)
unknown transition dynamics P(x¢41|x¢, ar)

@ Average cost of a policy m(a|x): !
;
) 1
Ap = E[ lem?; c(x{, af ]
A1 Unichain: MDP states form a single recurrent class under any policy.

A2 Uniform mixing: ||(v' — v;)H|l1 < exp(=1/x)||v’ — v||, where v, (x, a) is
the steady-state distribution of 7, and Hiy o), (v, o) = P(X’|x, a)r(a’|x").

1{(xt”, a’)}t=1,2,... denotes the state-action sequence whenfollowing =
a7



Policy iteration

Input: phase length 7 > 0, initial state x

Set ao(x, a) =0, m(alx) =1/A Vx,a
fori:=0,1,2,...,do
Policy evaluation:
Execute 7; for 7 time steps and collect data.
Compute the action-value estimate a,-(x, a).
Policy improvement:

7iv1(-]x) = argmin(u, Qi(x, -))
ue
end for

Q:(x,a) = c(x,a) — Ay + E| limr_ lT ZL c(x, ay)

X():X,ao:a:|

Qi is an approximation of Qy, (e.g. linear or neural network)
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Policy iteration using expert advice (POLITEX)

Input: phase length 7 > 0, initial state xp

Set ao(x, a) =0, mo(alx) =1/A Vx,a
fori:=0,1,2,...,do
Policy evaluation:
Execute 7; for 7 time steps and collect data.
Compute the action-value estimate ai(x, a).

Policy improvement:

i1 () = axgmin(u, ) Qi(x.) =1 H(w)

j=0
o132
j=0

end for
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PoLiTEX regret (informal)

e For a,- estimated from 7 transitions, we require
ai € [b, b+ Qmax] and ||Qm - ai”v,r’. =¢& + 0(1/\/1_'),

where ¢ is the approximation error. Satisfied e.g. by LSPE (Bertsekas &
loffe, 1996) under a "feature excitation" assumption on the policies.

Then the regret of PoLITEX w.r.t a reference policy 7%, defined as
Ry = 2;1 c(x¢, ar) — c(x;, a;), is of the order

Ry = 6(T3/4 +£0T).

Regret bound does not scale in the size of the underlying MDP.

@ Unlike existing policy iteration results (for discounted MDPs), does not
depend on the concentrability coefficient.

Easy to implement - no confidence bounds required.
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Experiments

PoLiTex + LSPE on Queueing networks PoLITEX + neural nets on Ms Pacman
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