POLITEX: Regret Bounds for Policy Iteration Using Expert Prediction

Yasin Abbasi-Yadkori ¹, Peter L. Bartlett ², Kush Bhatia ², Nevena Lazić ³, Csaba Szepesvári ⁴, Gellért Weisz ⁴

¹Adobe, ²Berkeley, ³Google, ⁴DeepMind

Setting and notation

- Markov decision process (MDP) observed states $x \in S$, discrete actions $a \in \{1, ..., A\}$, unknown costs c(x, a) unknown transition dynamics $P(x_{t+1}|x_t, a_t)$
- Average cost of a policy $\pi(a|x)$: ¹

$$\lambda_{\pi} = \mathbf{E} \left[\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} c(x_{t}^{\pi}, a_{t}^{\pi}) \right]$$

- A1 Unichain: MDP states form a single recurrent class under any policy.
- A2 Uniform mixing: $\|(v'-v_{\pi})H\|_1 \le \exp(-1/\kappa)\|v'-v_{\pi}\|$, where $v_{\pi}(x,a)$ is the steady-state distribution of π , and $H_{(x,a),(x',a')} = P(x'|x,a)\pi(a'|x')$.

Nevena Lazić (Google) POLITEX 2/7

 $^{\{(}x_t^{\pi}, a_t^{\pi})\}_{t=1,2,...}$ denotes the state-action sequence when following π

Policy iteration

Input: phase length $\tau > 0$, initial state x_0

Set
$$\widehat{Q}_0(x, a) = 0$$
, $\pi_0(a|x) = 1/A \ \forall x, a$

for
$$i := 0, 1, 2, ..., do$$

Policy evaluation:

Execute π_i for τ time steps and collect data.

Compute the action-value estimate $\widehat{Q}_i(x, a)$.

Policy improvement:

$$\pi_{i+1}(\cdot|x) = \underset{u \in \Lambda}{\operatorname{argmin}} \langle u, \widehat{Q}_i(x,\cdot) \rangle$$

end for

$$Q_{\pi}(x, a) = c(x, a) - \lambda_{\pi} + \mathbf{E} \left[\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} c(x_{t}^{\pi}, a_{t}^{\pi}) \middle| x_{0} = x, a_{0} = a \right]$$

 \widehat{Q}_i is an approximation of Q_{π_i} (e.g. linear or neural network)

3/7

Nevena Lazić (Google)

Policy iteration using expert advice (POLITEX)

Input: phase length $\tau > 0$, initial state x_0

Set
$$\widehat{Q}_0(x, a) = 0$$
, $\pi_0(a|x) = 1/A \ \forall x, a$

for
$$i := 0, 1, 2, ..., do$$

Policy evaluation:

Execute π_i for τ time steps and collect data.

Compute the action-value estimate $\widehat{Q}_i(x, a)$.

Policy improvement:

$$\pi_{i+1}(\cdot|x) = \underset{u \in \Delta}{\operatorname{argmin}} \langle u, \sum_{j=0}^{i} \widehat{Q}_{j}(x, \cdot) \rangle - \eta^{-1} \mathcal{H}(u)$$
$$\propto \exp\left(-\eta \sum_{i=0}^{i} \widehat{Q}_{j}(x, \cdot)\right)$$

end for

Politex regret (informal)

• For \widehat{Q}_i estimated from τ transitions, we require

$$\widehat{Q}_i \in [b, b + Q_{\mathsf{max}}]$$
 and $\|Q_{\pi_i} - \widehat{Q}_i\|_{\nu_{\pi_i}} = \varepsilon_0 + O(1/\sqrt{\tau})$,

where ε_0 is the approximation error. Satisfied e.g. by LSPE (Bertsekas & loffe, 1996) under a "feature excitation" assumption on the policies.

• Then the regret of POLITEX w.r.t a reference policy π^* , defined as $\Re_T = \sum_{t=1}^T c(x_t, a_t) - c(x_t^*, a_t^*)$, is of the order

$$\mathfrak{R}_T = \widetilde{O}(T^{3/4} + \varepsilon_0 T) \,.$$

- Regret bound does not scale in the size of the underlying MDP.
- Unlike existing policy iteration results (for discounted MDPs), does not depend on the concentrability coefficient.
- Easy to implement no confidence bounds required.

5/7

Nevena Lazić (Google)

Experiments

POLITEX + LSPE on Queueing networks

POLITEX + neural nets on Ms Pacman

Related work

- E. Even-Dar, S. Kakade, and Y. Mansour, *Online MDPs*. Mathematics of Operations Research, 2009.
 - MDP-E uses an experts algorithm in each state x with losses Q(x, a). Politex is similar, but learns the action-value function from data.
- Y. Abbasi-Yadkori, N. Lazić, and Cs. Szepesvári, Regret bounds for model-free linear quadratic control via reduction to expert prediction. AISTATS 2019.
 - Similar approach applied to the control of LQ systems.
- H. Yu and D. Bertsekas, Convergence results for some temporal difference methods based on least squares. IEEE Transactions on Automatic Control, 2009.
 - Asymptotic convergence analysis of average-cost LSPE, here adapted to finite-sample analysis for learning Q functions.
- Degrave et al., Quinoa. NeurIPS DeepRL Workshop, 2018.
 Abdolmaleki et al, Maximum a-posteriori policy optimization. ICLR, 2018.
 - Similar algorithms based on heuristics.

Nevena Lazić (Google) POLITEX 7/7