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Motivation: Large yet Sparse Data

Example: Flu data  
Suppose for a large random subset of 
the population in California, we 
observe whether a person caught the 
flu or not for last 5 years
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• Population size is large, often hundreds of thousands or millions
• Number of observations per individual is limited (sparse) prohibiting accurate 

estimation of  parameters of interest

• Application domains: Epidemiology, Social Sciences, Psychology, Medicine, Biology

Example: Flu data  
Suppose for a large random subset of 
the population in California, we 
observe whether a person caught the 
flu or not for last 5 years

2

bias of coin i

pii

Probability of 
catching flu 
(unknown)

1 0 0 1 0{ }
xi = 2

bpi =
xi

t

= 0.4± 0.45

Goal: Can we learn the distribution of 
the biases over the population?



Poster #189

Motivation: Large yet Sparse Data

• Population size is large, often hundreds of thousands or millions
• Number of observations per individual is limited (sparse) prohibiting accurate 

estimation of  parameters of interest

• Application domains: Epidemiology, Social Sciences, Psychology, Medicine, Biology

Example: Flu data  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observe whether a person caught the 
flu or not for last 5 years
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catching flu 
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1 0 0 1 0{ }
xi = 2

bpi =
xi

t

= 0.4± 0.45

Goal: Can we learn the distribution of 
the biases over the population?

Why? Testing and estimating properties of the distribution
Useful for downstream analysis:
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• Wasserstein-1 distance 
(Earth Mover’s Distance) W1

⇣
P ?, P̂

⌘

P ?
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•  Empirical plug-in estimator is bad ˆPplug-in = histogram
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The setting in this work is different

•  Many recent works on estimating symmetric properties of a discrete distribution 
with sparse observations
Paninski 2003, Valiant and Valiant 2011, Jiao et. al. 2015, Orlitsky et. al. 2016, Acharya et. al. 2017 …. 
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•  Tian et. al 2017  proposed a moment matching based estimator which achieves
whenoptimal error of O

✓
1

t

◆

Weakness of moment matching estimator is that it fails to obtain optimal error 
when due to higher variance in larger momentst > c logN

t < c logN

What about Maximum Likelihood Estimator?

N = Number of 
coins t =

Number of 
tosses per 

coin
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• NOT the empirical estimator

Maximum Likelihood Estimator

• Convex optimization: Efficient (polynomial time)
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• Proposed in late 1960’s by Frederic Lord in the context of psychological testing. 
Several works study the geometry and identifiability and uniqueness of the 
solution of the MLE
Lord 1965,1969, Turnbull 1976, Laird 1978, Lindsay 1983, Wood 1999 

Sufficient statistic: Fingerprint

Poster #189

P̂mle 2 arg min
Q2dist[0,1]

KL Observed h  , Expected  h under the distribution Q

fingerprint vectorh = [h0, h1, ..hs, .., ht] 0 1 2 3 4 5

hs

s

hs =
# coins that show s heads

N
s = 0, 1, ..., t



• NOT the empirical estimator

Maximum Likelihood Estimator

• Convex optimization: Efficient (polynomial time)

5

• Proposed in late 1960’s by Frederic Lord in the context of psychological testing. 
Several works study the geometry and identifiability and uniqueness of the 
solution of the MLE
Lord 1965,1969, Turnbull 1976, Laird 1978, Lindsay 1983, Wood 1999 

Sufficient statistic: Fingerprint

Poster #189

P̂mle 2 arg min
Q2dist[0,1]

KL Observed h  , Expected  h under the distribution Q

fingerprint vectorh = [h0, h1, ..hs, .., ht] 0 1 2 3 4 5

hs

s

How well does the MLE recover the distribution?

hs =
# coins that show s heads

N
s = 0, 1, ..., t
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Theorem 1
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approximating Lipschitz-1 functions on [0, 1]

Bernstein polynomials
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Summary
Learning distribution of parameters over a population with sparse 
observations per individual

MLE is Minimax Optimal 
even with sparse 

observations!
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