Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension

Jisu KIM

Inria Saclay

2019-06-11

Poster:#188 1/7

Kernel Density Estimator

▶ For $X_1, ..., X_n \sim P$, a given kernel function K, and a bandwidth h > 0, the Kernel Density Estimator (KDE) $\hat{p}_h : \mathbb{R}^d \to \mathbb{R}$ is

$$\hat{\rho}_h(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right).$$

Poster:#188 2/7

Average Kernel Density Estimator

▶ The Average Kernel Density Estimator (KDE) $p_h : \mathbb{R}^d \to \mathbb{R}$ is

$$p_h(x) = \mathbb{E}_P\left[\hat{p}_h(x)\right] = \frac{1}{h^d}\mathbb{E}_P\left[K\left(\frac{x-X}{h}\right)\right].$$

Average KDE

Poster:#188 3/7

We get the uniform convergence rate on Kernel Density Estimator.

- Fix a subset $\mathbb{X} \subset \mathbb{R}^d$, we need uniform control of the Kernel Density Estimator over \mathbb{X} , $\sup_{x \in \mathbb{X}} |\hat{p}_h(x) p_h(x)|$, for various purposes.
- ▶ We get the concentration inequalities for the Kernel Density Estimator in the supremum norm that hold uniformly over the selection of the bandwidth, i.e.,

$$\sup_{h\geq I_n,x\in\mathbb{X}}|\hat{p}_h(x)-p_h(x)|.$$

Uniform bound on KDE

Poster:#188 4/7

The volume dimension characterizes the intrinsic dimension of the distribution related to the convergence rate of the Kernel Density Estimator.

▶ For a probability distribution P on \mathbb{R}^d , the volume dimension is

$$d_{\mathrm{vol}} := \sup \left\{ \nu \geq 0 : \limsup_{r \to 0} \sup_{x \in \mathbb{X}} \frac{P(\mathbb{B}(x,r))}{r^{\nu}} < \infty \right\},$$

where
$$\mathbb{B}(x, r) = \{ y \in \mathbb{R}^d : ||x - y|| < r \}.$$

▶ In other words, the volume dimension is the maximum possible exponent rate dominating the probability volume decay on balls.

Poster:#188 5/7

The uniform convergence rate of the Kernel Density Estimator is derived in terms of the volume dimension.

Theorem

(Corollary 13, Corollary 17) Let P be a probability distribution on \mathbb{R}^d satisfying weak assumptions and K be a kernel function satisfying weak assumptions. Suppose $I_n \to 0$ and $nI_n \to \infty$. Then with high probability,

$$\sqrt{\frac{1}{n l_n^{2d-d_{\mathrm{vol}}}}} \precsim \sup_{h \ge l_n, x \in \mathbb{X}} |\hat{p}_h(x) - p_h(x)| \precsim \sqrt{\frac{\log(1/l_n)}{n l_n^{2d-d_{\mathrm{vol}}}}},$$

for all large n.

Poster:#188 6/7

Poster: Pacific Ballroom #188

- ▶ Poster: Tuesday Jun 11th 18:30 21:00 @ Pacific Ballroom #188
- ► Thank you!

Poster:#188 7/7