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Kernel Density Estimator

I For X1, . . . ,Xn ∼ P, a given kernel function K , and a bandwidth
h > 0, the Kernel Density Estimator (KDE) p̂h : Rd → R is

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.
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Average Kernel Density Estimator

I The Average Kernel Density Estimator (KDE) ph : Rd → R is

ph(x) = EP [p̂h(x)] =
1
hd

EP

[
K

(
x − X

h

)]
.
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We get the uniform convergence rate on Kernel Density
Estimator.

I Fix a subset X ⊂ Rd , we need uniform control of the Kernel Density
Estimator over X, supx∈X |p̂h(x)− ph(x)|, for various purposes.

I We get the concentration inequalities for the Kernel Density
Estimator in the supremum norm that hold uniformly over the
selection of the bandwidth, i.e.,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| .
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The volume dimension characterizes the intrinsic dimension
of the distribution related to the convergence rate of the
Kernel Density Estimator.

I For a probability distribution P on Rd , the volume dimension is

dvol := sup

{
ν ≥ 0 : lim sup

r→0
sup
x∈X

P(B(x , r))
rν

<∞
}
,

where B(x , r) = {y ∈ Rd : ‖x − y‖ < r}.
I In other words, the volume dimension is the maximum possible

exponent rate dominating the probability volume decay on balls.
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The uniform convergence rate of the Kernel Density
Estimator is derived in terms of the volume dimension.

Theorem
(Corollary 13, Corollary 17) Let P be a probability distribution on Rd

satisfying weak assumptions and K be a kernel function satisfying weak
assumptions. Suppose ln → 0 and nln →∞. Then with high probability,√

1
nl2d−dvol

n

- sup
h≥ln,x∈X

|p̂h(x)− ph(x)| -

√
log(1/ln)
nl2d−dvol

n

,

for all large n.
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