Nearest Neighbor and Kernel Survival Analysis

Nonasymptotic Error Bounds and Strong Consistency Rates

George H. Chen Assistant Professor of Information Systems Carnegie Mellon University

Gluten allergy	Immuno- suppressant	Low resting heart rate	Irregular heart beat	High BMI	Time of death
					Day 2
					Day 10
					Day ≥ 6

Gluten Low resting Irregular Time of Immuno-High BMI suppressant heart rate heart beat death allergy Day 2 Feature vector X Observed time Y Day 10 $Day \ge 6$

When we stop collecting training data, not everyone has died!

Gluten Time of Immuno-Low resting Irregular High BMI death allergy suppressant heart rate heart beat Day 2 Feature vector X Observed time YDay 10

When we stop collecting training data, not everyone has died!

Goal: Estimate $S(t|x) = \mathbb{P}(\text{survive beyond time } t \mid \text{feature vector } x)$

Model: Generate data point (X, Y, δ) as follows:

1. Sample feature vector $X \sim \mathbb{P}_X$

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring $(T \leq C)$:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \le C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Estimator (Beran 1981):

Kernel variant is similar

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \le C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Estimator (Beran 1981):

$$find k training points closest to x \longrightarrow k data points \longrightarrow Kaplan-Meier estimator \longrightarrow \widehat{S}(t \mid x)$$

Kernel variant is similar

Error:
$$\sup_{t \in [0,\tau]} |\widehat{S}(t|x) - S(t|x)|$$
 for time horizon τ

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \le C$): Set $Y = T, \delta = 1$ Otherwise: Set $Y = C, \delta = 0$

Estimator (Beran 1981):

Kernel variant is similar

Error:
$$\sup_{t \in [0,\tau]} |\widehat{S}(t|x) - S(t|x)|$$
 for time horizon τ

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$
- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$

Otherwise: Set $Y = C, \delta = 0$

Estimator (Beran 1981):

Feature space is separable metric space (intrinsic dimension *d*)

Kernel variant is similar

Error: $\sup_{t \in [0,\tau]} |\widehat{S}(t|x) - S(t|x)|$ for time horizon τ

Model: Generate data point (X, Y, δ) as follows:

- 1. Sample feature vector $X \sim \mathbb{P}_X$
- 2. Sample time of death $T \sim \mathbb{P}_{T|X}$

3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$

Continuous r.v. in **time** & smooth w.r.t. **feature space** (Hölder index α)

4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$

Otherwise: Set $Y = C, \delta = 0$

Estimator (Beran 1981):

Feature space is separable metric space (intrinsic dimension *d*)

Kernel variant is similar

Error: $\sup_{t \in [0,\tau]} |\widehat{S}(t|x) - S(t|x)|$ for time horizon τ

Model: Generate data point (X, Y, δ) as follows:

1. Sample feature vector $X \sim \mathbb{P}_X$

Borel prob. measure

2. Sample time of death $T \sim \mathbb{P}_{T|X}$

Continuous r.v. in **time** & smooth w.r.t. **feature space** (Hölder index α)

- 3. Sample time of censoring $C \sim \mathbb{P}_{C|X}$
- 4. If death happens before censoring ($T \leq C$): Set $Y = T, \delta = 1$

Otherwise: Set $Y = C, \delta = 0$

Estimator (Beran 1981):

Feature space is separable metric space (intrinsic dimension *d*)

Kernel variant is similar

Error: $\sup_{t \in [0,\tau]} |\widehat{S}(t|x) - S(t|x)|$ for time horizon τ

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t \in [0,\tau]} |\widehat{S}(t|x) - S(t|x)| \le \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

→ Error upper bound, up to a log factor, matches conditional CDF estimation lower bound by Chagny & Roche 2014

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

→ Error upper bound, up to a log factor, matches conditional CDF estimation lower bound by Chagny & Roche 2014

Proof ideas also give finite sample rates for:

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

→ Error upper bound, up to a log factor, matches conditional CDF estimation lower bound by Chagny & Roche 2014

Proof ideas also give finite sample rates for:

Kernel Kaplan-Meier estimators

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

→ Error upper bound, up to a log factor, matches conditional CDF estimation lower bound by Chagny & Roche 2014

Proof ideas also give finite sample rates for:

- Kernel Kaplan-Meier estimators
- k-NN & kernel Nelson-Aalen *cumulative hazard* estimators $(-\log S(t \mid x))$

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

→ Error upper bound, up to a log factor, matches conditional CDF estimation lower bound by Chagny & Roche 2014

Proof ideas also give finite sample rates for:

- Kernel Kaplan-Meier estimators
- k-NN & kernel Nelson-Aalen *cumulative hazard* estimators $(-\log S(t \mid x))$
- Generalization bound for automatic k using validation data

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

→ Error upper bound, up to a log factor, matches conditional CDF estimation lower bound by Chagny & Roche 2014

Proof ideas also give finite sample rates for:

- Kernel Kaplan-Meier estimators
- k-NN & kernel Nelson-Aalen *cumulative hazard* estimators $(-\log S(t \mid x))$
- Generalization bound for automatic k using validation data

Most general finite sample theory for *k*-NN and kernel survival estimators

k-NN estimator with $k = \widetilde{\Theta}(n^{2\alpha/(2\alpha+d)})$ has strong consistency rate:

$$\sup_{t\in[0,\tau]}|\widehat{S}(t|x)-S(t|x)|\leq \widetilde{O}(n^{-\alpha/(2\alpha+d)})$$

If no censoring, problem reduces to conditional CDF estimation

→ Error upper bound, up to a log factor, matches conditional CDF estimation lower bound by Chagny & Roche 2014

Proof ideas also give finite sample rates for:

- Kernel Kaplan-Meier estimators
- k-NN & kernel Nelson-Aalen *cumulative hazard* estimators $(-\log S(t \mid x))$
- Generalization bound for automatic k using validation data

Most general finite sample theory for k-NN and kernel survival estimators

Existing kernel results only for Euclidean space (Dabrowska 1989, Van Keilegom & Veraverbeke 1996, Van Keilegom 1998)

Experiments

Dataset "gbsg2" Concordance Indices

Experiments

Dataset "gbsg2" Concordance Indices

Distance/kernel choice matter a lot in practice

Experiments

Dataset "gbsg2" Concordance Indices

Distance/kernel choice matter a lot in practice

Learning the kernel typically has best performance (but no theory yet!)