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Goal: Estimate S(t|x) = P(survive beyond time t | feature vector x)

Feature vector XX Observed time YY
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Existing kernel results only for Euclidean space  
(Dabrowska 1989, Van Keilegom & Veraverbeke 1996, Van Keilegom 1998)
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Experiments

Distance/kernel 
choice matter a lot 

in practice

Learning the 
kernel typically has 
best performance 
(but no theory yet!)


