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Inferring network propagation models

Inferring network dynamical systems is a broad and well-studied area.
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We consider the problem of inferring the node functions of a networked dynamical
system.

Observation model: Probably Approximately Correct (PAC) learning
Model class: Threshold dynamical systems
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Motivation and previous work

PAC learning network dynamical systems:
Learning influence functions of nodes in stochastic networked dynamical
systems [Narasimhan et al., 2015; He et al., 2016].

Extensive research on PAC learning threshold functions, and in general,
Boolean functions [Hellerstein & Servedio 2007].

Practical Use of Threshold models:
Widespread application in modeling protests, information diffusion
(e.g., word of mouth, social media), adoption of practices
(e.g., contraception, innovation), transmission of emotions, etc.
(Granovetter 1978).

Social science network experiments (Centola 2010).

General inference: (González-Bailón et al. 2011;
Romero, Meeder, and Kleinberg 2011) present methods to infer
thresholds from social media data.
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Threshold propagation model

Closed neighborhood of a vertex v : N[v ]

Every node is associated with a threshold: t(v)

qi+1(v) =

{
1,

∑
v ′∈N[v ] qi (v

′) ≥ t(v)

0, otherwise

t(a) = 1, t(b) = 1, t(c) = 2, t(d) = 2

a
0

b
0

c
0

d
1

a
1

b
0

c
0

d
0

a
1

b
1

c
0

d
0

4 / 8



Probably Approximately Correct (PAC) learning framework
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+ means q′ is the successor of q. Otherwise, it is not.
User knows:

Network (undirected, unweighted)
Concept class: threshold functions

Questions of interest

Are threshold dynamical systems efficiently learnable?
Sample complexity: How many examples (i.e., pairs of configurations) are
sufficient to infer the dynamical system?
Is there an efficient learning algorithm?
How do these algorithms perform on real-world networks?
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Results
Sample complexity

Threshold dynamical systems are PAC learnable.

Upper bound on sample complexity M(ε, δ):

M(ε, δ) ≤ 1
ε

(
n log(davg + 3) + log(1/δ)

)
.

We also extend the bound to other classes of threshold functions.

Lower bounds on sample complexity:

Ω(n/ε) using Vapnis-Chervonenkis (VC) dimension of
the hypothesis space of threshold functions.

It is within a factor O(log n) of the upper bound.

Tight example: When the underlying graph is a clique, the
VC dimension of the hypothesis space is ≤ n + 1.
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Results
Algorithmic efficiency

Hardness of learning depends on negative examples.

When there are both positive and negative examples, the hypothesis class of
threshold functions is not efficiently PAC learnable, unless the complexity
classes NP and RP (Randomized Polynomial time) coincide.

Efficient learning algorithms:

When there are only positive examples, we present an algorithm which learns
in time O(|E|n), where E is the set of examples and n is the number of nodes.
Exact algorithm: When a set EN of negative examples is also given, we
present a dynamic programming algorithm that learns in time
O(2|EN |poly(n)), which is polynomial when |EN | = O(log n).
Approximation algorithm: Using submodular function maximization under
matroid constraints, we present an efficient learner which is consistent with
all the positive examples and at least (1− 1/e) fraction of the negative
examples.
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Results
Experiments

Accuracy and sample complexity

Effect of graph size

Effect of graph density

Effect of distributions for sampling
configurations
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