PAC Learnability of Node Functions in Networked Dynamical Systems

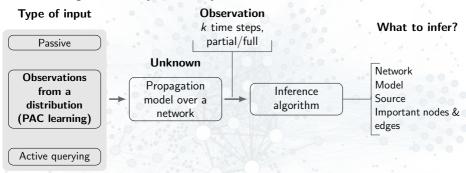
Abhijin Adiga, Chris J. Kuhlman, Madhav V. Marathe* S. S. Ravi, and **Anil K. Vullikanti***

Network Systems Science and Advanced Computing Division Biocomplexity Institute and Initiative University of Virginia

*Also with the Computer Science Department, University of Virginia.

Inferring network propagation models

• Inferring network dynamical systems is a broad and well-studied area.



We consider the problem of inferring the node functions of a networked dynamical system.

- Observation model: Probably Approximately Correct (PAC) learning
- Model class: Threshold dynamical systems

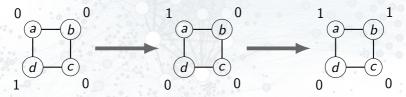
Motivation and previous work

- PAC learning network dynamical systems:
 - Learning influence functions of nodes in stochastic networked dynamical systems [Narasimhan et al., 2015; He et al., 2016].
 - Extensive research on PAC learning threshold functions, and in general, Boolean functions [Hellerstein & Servedio 2007].
- Practical Use of Threshold models:
 - Widespread application in modeling protests, information diffusion (e.g., word of mouth, social media), adoption of practices (e.g., contraception, innovation), transmission of emotions, etc. (Granovetter 1978).
 - Social science network experiments (Centola 2010).
 - General inference: (González-Bailón et al. 2011;
 Romero, Meeder, and Kleinberg 2011) present methods to infer thresholds from social media data.

Threshold propagation model

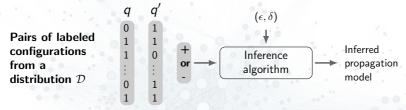
- Closed neighborhood of a vertex v: N[v]
- Every node is associated with a threshold: t(v)

$$q_{i+1}(v) = egin{cases} 1, & \sum_{v' \in N[v]} q_i(v') \geq t(v) \ 0, & ext{otherwise} \end{cases}$$



$$t(a) = 1$$
, $t(b) = 1$, $t(c) = 2$, $t(d) = 2$

Probably Approximately Correct (PAC) learning framework



- \bullet + means q' is the successor of q. Otherwise, it is not.
- User knows:
 - Network (undirected, unweighted)
 - Concept class: threshold functions

Questions of interest

- Are threshold dynamical systems efficiently learnable?
- Sample complexity: How many examples (i.e., pairs of configurations) are sufficient to infer the dynamical system?
- Is there an efficient learning algorithm?
- How do these algorithms perform on real-world networks?

Results

Sample complexity

Threshold dynamical systems are PAC learnable.

• Upper bound on sample complexity $\mathcal{M}(\epsilon, \delta)$:

$$\mathcal{M}(\epsilon, \delta) \leq \frac{1}{\epsilon} (n \log(d_{\mathsf{avg}} + 3) + \log(1/\delta)).$$

We also extend the bound to other classes of threshold functions.

- Lower bounds on sample complexity:
 - $\Omega(n/\epsilon)$ using Vapnis-Chervonenkis (VC) dimension of the hypothesis space of threshold functions.
 - It is within a factor $O(\log n)$ of the upper bound.
 - Tight example: When the underlying graph is a **clique**, the VC dimension of the hypothesis space is $\leq n + 1$.

Results

Algorithmic efficiency

Hardness of learning depends on negative examples.

 When there are both positive and negative examples, the hypothesis class of threshold functions is not *efficiently* PAC learnable, unless the complexity classes NP and RP (Randomized Polynomial time) coincide.

Efficient learning algorithms:

- When there are only positive examples, we present an algorithm which learns in time $O(|\mathcal{E}|n)$, where \mathcal{E} is the set of examples and n is the number of nodes.
- Exact algorithm: When a set \mathcal{E}_N of negative examples is also given, we present a dynamic programming algorithm that learns in time $O(2^{|\mathcal{E}_N|}\mathrm{poly}(n))$, which is polynomial when $|\mathcal{E}_N| = O(\log n)$.
- Approximation algorithm: Using submodular function maximization under matroid constraints, we present an efficient learner which is consistent with all the positive examples and at least (1-1/e) fraction of the negative examples.

Results

Experiments

Network	Properties			
	n	E	d_{ave}	d_{max}
Jazz	198	2742	27.70	100
NRV	769	4551	11.84	20
euEmall	986	16064	32.58	345
Ran Reg a,1	11-1000	$n d_{avg}/2$	10	10
Scl free ^{a,2}	20-1000	$\sim n \ d_{avg}/2$	9.5–9.9	13-149
Cliques ³	400	$n_q n_c (n_c - 1)/2$	$n_c - 1$	$n_c - 1$

Accuracy and sample complexity

- Effect of graph size
- Effect of graph density
- Effect of distributions for sampling configurations

