Sanjoy Dasgupta, Daniel Hsu, Stefanos Poulis, Jerry Zhu

Teaching

Three models of learning:

- The statistical learning model
- Online learning
- Teaching

Teaching

Three models of learning:

- The statistical learning model
- Online learning
- Teaching

Teacher	Learner
Human	Human
Human	Machine
Machine	Human
Machine	Machine

Minimum teaching sets

Teacher chooses informative examples [Kearns-Goldman, Shinohara-Miyano]:

- Finite instance space ${\cal X}$
- Learner is using finite concept class C
- Target concept $c^* \in C$
- Teaching set: a set of labeled examples that uniquely identifies c* in C
- What is the smallest teaching set?

Minimum teaching sets

Teacher chooses informative examples [Kearns-Goldman, Shinohara-Miyano]:

- Finite instance space ${\cal X}$
- Learner is using finite concept class C
- Target concept $c^* \in C$
- Teaching set: a set of labeled examples that uniquely identifies c* in C
- What is the smallest teaching set?

Problem: Teacher needs to know learner's concept class

Setting: Learner is using some concept class C (say with VC dimension d, teaching set size t) but teacher has no idea what it is.

Setting: Learner is using some concept class C (say with VC dimension d, teaching set size t) but teacher has no idea what it is.

Without interaction: If teaching examples are supplied in advance, can do no better in general than providing all of \mathcal{X} .

Setting: Learner is using some concept class C (say with VC dimension d, teaching set size t) but teacher has no idea what it is.

Without interaction: If teaching examples are supplied in advance, can do no better in general than providing all of \mathcal{X} .

Construction: data in \mathbb{R}^k , learner's hypothesis class consists of thresholds along one of the k dimensions:

Teaching with interaction

Teaching occurs in rounds:

• The teacher gets to *probe* learner's current concept before choosing which example to provide next.

Teaching with interaction

Teaching occurs in rounds:

• The teacher gets to *probe* learner's current concept before choosing which example to provide next.

Positive result: Efficiently find teaching set of size $O(td \log^2 |\mathcal{X}|)$.

Teaching algorithm

- **1** Let $S = \emptyset$ (teaching set)
- **2** For each $x \in \mathcal{X}$:
 - Initialize weight w(x) = 1/m
 - Draw T_x from an exponential distribution, rate $\ln(N/\delta)$
- 3 Repeat until done:
 - Learner provides $h: \mathcal{X} \to \{0,1\}$ as a black box
 - Let $\Delta(h) = \{x \in \mathcal{X} : h(x) \neq h^*(x)\}$
 - If $\Delta(h) = \emptyset$: halt and accept h
 - While $w(\Delta(h)) < 1$:
 - Double each w(x), for $x \in \Delta(h)$
 - If this causes some w(x) to exceed T_x for the first time, add x to S and provide as a teaching example

Example

Open problem in teaching

Teacher	Learner
Human	Human
Human	Machine
Machine	Human
Machine	Machine

Psychological finding: Human learners treat teaching examples differently from random examples.