Learning What and Where to Transfer

Yunhun Jang*1,2, Hankook Lee*1, Sung Ju Hwang3,4,5, Jinwoo Shin1,4,5

- ¹School of Electrical Engineering, KAIST
- ²OMNIOUS
- ³ School of Computing, KAIST
- 4 Graduate School of AI, KAIST
- 5 AITRICS

Transfer Learning

- DNNs require large labeled datasets to train
- Transfer learning is a popular method to mitigate the lack of samples
 - Improve the performance of a model on a new task
 - By utilizing the *knowledge* of pre-trained *source models*

Transfer Learning

- DNNs require large labeled datasets to train
- Transfer learning is a popular method to mitigate the lack of samples
 - Improve the performance of a model on a new task
 - By utilizing the *knowledge* of pre-trained *source models*
- Limitations of previous methods
 - Require the same architecture between a source and target models (e.g., fine-tuning)

Pre-train and fine-tuning

Transfer Learning

- DNNs require large labeled datasets to train
- Transfer learning is a popular method to mitigate the lack of samples
 - Improve the performance of a model on a new task
 - By utilizing the *knowledge* of pre-trained *source models*
- Limitations of previous methods
 - Require the same architecture between a source and target models (e.g., fine-tuning)
 - Require exhaustive hand-crafted tuning (e.g., attention transfer [1], Jacobian matching

Pre-train and fine-tuning

Attention transfer/Jacobian matching

Learning What/Where to Transfer

- ullet Propose meta-networks f and g
 - Learn the learning rules to transfer the source knowledge

Learning What/Where to Transfer

- ullet Propose meta-networks f and g
 - Learn the learning rules to transfer the source knowledge

Where to transfer

ullet A meta-network g decides useful pairs of source/target layers to transfer

Learning What/Where to Transfer

- Propose meta-networks f and g: Learning what/where to transfer (L2T-ww)
 - Learn the learning rules to transfer the source knowledge

Where to transfer

ullet A meta-network g decides useful pairs of source/target layers to transfer

What to transfer

• A meta-network f decides useful channels to transfer

• Transfer by making target features similar to those of source [3]

Feature Matching

$$\mathcal{L}_{fm}^{m,n}(\theta|x) = \frac{1}{CHW} \sum_{i,j} (r_{\theta}(T_{\theta}^{n}(x))_{c,i,j} - S^{m}(x)_{c,i,j})^{2}$$

Learn what to transfer

$$\mathcal{L}_{\text{wfm}}^{m,n}(\theta|x,w^{m,n}) = \frac{1}{HW} \sum_{c} w_{c}^{m,n} \sum_{i,j} (r_{\theta}(T_{\theta}^{n}(x))_{c,i,j} - S^{m}(x)_{c,i,j})^{2}$$

Learn what to transfer

Learn what to transfer

Learn where to transfer

- Meta-networks choose important matching pairs to transfer
 - Given all possible candidate matching pairs ${\cal C}$

Learn where to transfer

Learn where to transfer

Choose pairs of feature-matched layers among all the possible pairs

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- A popular bilevel scheme [4,5] for training meta-parameters ϕ :

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- A popular bilevel scheme [4,5] for training meta-parameters ϕ :
 - 1. Training simulation: for t = 1, ..., T, $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \mathcal{L}_{total}(\theta_t | x_t, y_t, \phi)$

- Total loss for target model: $\mathcal{L}_{\text{total}}(\theta|x,y,\phi) = \mathcal{L}_{\text{org}}(\theta|x,y) + \beta \mathcal{L}_{\text{wfm}}(\theta|x,\phi)$
- A popular bilevel scheme [4,5] for training meta-parameters ϕ :
 - 1. Training simulation: for t = 1, ..., T,

$$\theta_{t+1} = \theta_t - \alpha \nabla_{\theta} \mathcal{L}_{\text{total}}(\theta_t | x_t, y_t, \phi)$$

2. Evaluation:

$$\mathcal{L}_{\text{meta}}(\phi) = \mathcal{L}_{\text{org}}(\theta_{T+1}|x_{\text{val}}, y_{\text{val}})$$

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- A popular bilevel scheme [4,5] for training meta-parameters ϕ :
 - 1. Training simulation: for t = 1, ..., T,

$$\theta_{t+1} = \theta_t - \alpha \nabla_{\theta} \mathcal{L}_{\text{total}}(\theta_t | x_t, y_t, \phi)$$

2. Evaluation:

$$\mathcal{L}_{\text{meta}}(\phi) = \mathcal{L}_{\text{org}}(\theta_{T+1}|x_{\text{val}},y_{\text{val}})$$

3. Update ϕ based on $\nabla_{\phi} \mathcal{L}_{\mathtt{meta}}(\phi)$ using second-order gradients

- Total loss for target model: $\mathcal{L}_{\mathtt{total}}(\theta|x,y,\phi) = \mathcal{L}_{\mathtt{org}}(\theta|x,y) + \beta \mathcal{L}_{\mathtt{wfm}}(\theta|x,\phi)$
- A popular bilevel scheme [4,5] for training meta-parameters ϕ :
 - 1. Training simulation: for t = 1, ..., T,

$$\theta_{t+1} = \theta_t - \alpha \nabla_{\theta} \mathcal{L}_{\text{total}}(\theta_t | x_t, y_t, \phi)$$

2. Evaluation:

$$\mathcal{L}_{\text{meta}}(\phi) = \mathcal{L}_{\text{org}}(\theta_{T+1}|x_{\text{val}}, y_{\text{val}})$$

- 3. Update ϕ based on $\nabla_{\phi} \mathcal{L}_{\mathtt{meta}}(\phi)$ using second-order gradients
- The transfer loss $\mathcal{L}_{ t wfm}$ acts as a regularization
- ullet A large number of steps T is required to obtain meaningful gradients
 - But it is time-consuming

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- The proposed bilevel scheme for training meta-parameters ϕ :

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- The proposed bilevel scheme for training meta-parameters ϕ :

```
1. Knowledge transfer: for t=1,\ldots,T, \theta_{t+1}=\theta_t-\alpha\nabla_{\theta}\mathcal{L}_{\mathtt{wfm}}(\theta_t|\pmb{x},\phi)
```

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- The proposed bilevel scheme for training meta-parameters ϕ :
 - 1. Knowledge transfer: for t = 1, ..., T, $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \mathcal{L}_{\text{wfm}}(\theta_t | \mathbf{x}, \phi)$
 - 2. One-step adaption:

$$\theta_{T+2} = \theta_{T+1} - \alpha \nabla_{\theta} \mathcal{L}_{\text{org}}(\theta_{T+1} | \boldsymbol{x}, \boldsymbol{y})$$

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- The proposed bilevel scheme for training meta-parameters ϕ :
 - 1. Knowledge transfer: for t = 1, ..., T, $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \mathcal{L}_{\text{wfm}}(\theta_t | \mathbf{x}, \phi)$
 - 2. One-step adaption:

$$\theta_{T+2} = \theta_{T+1} - \alpha \nabla_{\theta} \mathcal{L}_{\text{org}}(\theta_{T+1} | \boldsymbol{x}, \boldsymbol{y})$$

3. Evaluation:

$$\mathcal{L}_{\mathtt{meta}}(\phi) = \mathcal{L}_{\mathtt{org}}(\theta_{T+2}|\mathbf{x},\mathbf{y}).$$

4. Update ϕ based on $\nabla_{\phi} \mathcal{L}_{\text{meta}}(\phi)$ using second-order gradients

- Total loss for target model: $\mathcal{L}_{total}(\theta|x,y,\phi) = \mathcal{L}_{org}(\theta|x,y) + \beta \mathcal{L}_{wfm}(\theta|x,\phi)$
- The proposed bilevel scheme for training meta-parameters ϕ :
 - 1. Knowledge transfer: for t = 1, ..., T, $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} \mathcal{L}_{\text{wfm}}(\theta_t | \mathbf{x}, \phi)$
 - 2. One-step adaption:

$$\theta_{T+2} = \theta_{T+1} - \alpha \nabla_{\theta} \mathcal{L}_{\text{org}}(\theta_{T+1} | \boldsymbol{x}, \boldsymbol{y})$$

3. Evaluation:

$$\mathcal{L}_{\mathtt{meta}}(\phi) = \mathcal{L}_{\mathtt{org}}(\theta_{T+2}|\mathbf{x},\mathbf{y}).$$

- 4. Update ϕ based on $\nabla_{\phi} \mathcal{L}_{\text{meta}}(\phi)$ using second-order gradients
- Ours is effective for learning ϕ with a small number of steps T
- Ours learns θ and ϕ jointly without separate meta-learning phase

- Learning what and where to transfer gives consistent improvements
 - Suggested method works well in various tasks and architectures

Source task	TinyIma	igeNet	ImageNet			
Target task	CIFAR-100	STL-10	CUB200	MIT67	Stanford40	Stanford Dogs
Scratch	67.69 ± 0.22	65.18±0.91	42.15±0.75	48.91±0.53	$36.93{\scriptstyle\pm0.68}$	58.08 ± 0.26
$ m LwF^{[6]}$	$69.23{\scriptstyle\pm0.09}$	$68.64{\scriptstyle\pm0.58}$	$45.52{\scriptstyle\pm0.66}$	53.73 ± 2.14	$39.73{\scriptstyle\pm1.63}$	$66.33{\scriptstyle\pm0.45}$
AT ^[1] (one-to-one)	$67.54{\scriptstyle\pm0.40}$	$74.19{\scriptstyle\pm0.22}$	$57.74{\scriptstyle\pm1.17}$	$59.18{\scriptstyle\pm1.57}$	$59.29{\scriptstyle\pm0.91}$	$69.70 \scriptstyle{\pm 0.08}$
$LwF^{[6]}+AT^{[1]}$ (one-to-one)	$68.75{\scriptstyle\pm0.09}$	$75.06{\scriptstyle\pm0.57}$	$58.90{\scriptstyle\pm1.32}$	$61.42{\scriptstyle\pm1.68}$	$60.20{\scriptstyle\pm1.34}$	$72.67{\scriptstyle\pm0.26}$
FM ^[3] (single)	$69.40{\scriptstyle\pm0.67}$	$75.00{\scriptstyle\pm0.34}$	47.60 ± 0.31	$55.15{\scriptstyle\pm0.93}$	$42.93{\scriptstyle\pm1.48}$	$66.05{\scriptstyle\pm0.76}$
FM ^[3] (one-to-one)	$69.97{\scriptstyle\pm0.24}$	$76.38{\scriptstyle\pm1.18}$	$48.93{\scriptstyle\pm0.40}$	$54.88{\scriptstyle\pm1.24}$	$44.50{\scriptstyle\pm0.96}$	$67.25{\scriptstyle\pm0.88}$
L2T-w (single)	70.27±0.09	74.35 ± 0.92	51.95±0.83	60.41±0.37	46.25±3.66	69.16±0.70
L2T-w (one-to-one)	$70.02{\scriptstyle\pm0.19}$	$76.42{\scriptstyle\pm0.52}$	$56.61{\scriptstyle\pm0.20}$	$59.78{\scriptstyle\pm1.90}$	$48.19{\scriptstyle\pm1.42}$	$69.84{\scriptstyle\pm1.45}$
L2T-ww (all-to-all)	$\textbf{70.96} {\scriptstyle \pm 0.61}$	$\textbf{78.31} \scriptstyle{\pm 0.21}$	$65.05 {\scriptstyle\pm1.19}$	$64.85 \scriptstyle{\pm 2.75}$	$\textbf{63.08} \scriptstyle{\pm 0.88}$	$78.08 {\scriptstyle\pm0.96}$

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR 2017

^[3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In ICLR, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

- Learning what and where to transfer gives consistent improvements
 - Suggested method works well in various tasks and architectures

Source task	TinyIma	igeNet		Ir	nageNet		
Target task	CIFAR-100	STL-10	CUB200	MIT67	Stanford40	Stanford Dogs	
Scratch	67.69 ± 0.22	65.18±0.91	42.15±0.75	48.91±0.53	$36.93{\scriptstyle\pm0.68}$	58.08 ± 0.26	
$LwF^{[6]}$	$69.23{\scriptstyle\pm0.09}$	$68.64{\scriptstyle\pm0.58}$	$45.52{\scriptstyle\pm0.66}$	53.73 ± 2.14	$39.73{\scriptstyle\pm1.63}$	$66.33{\scriptstyle\pm0.45}$	
AT ^[1] (one-to-one)	$67.54{\scriptstyle\pm0.40}$	$74.19{\scriptstyle\pm0.22}$	$57.74{\scriptstyle\pm1.17}$	$59.18{\scriptstyle\pm1.57}$	$59.29{\scriptstyle\pm0.91}$	$69.70 \scriptstyle{\pm 0.08}$	
$LwF^{[6]}+AT^{[1]}$ (one-to-one)	$68.75 \scriptstyle{\pm 0.09}$	$75.06{\scriptstyle\pm0.57}$	$58.90{\scriptstyle\pm1.32}$	$61.42{\scriptstyle\pm1.68}$	$60.20{\scriptstyle\pm1.34}$	$72.67{\scriptstyle\pm0.26}$	
FM ^[3] (single)	$69.40{\scriptstyle\pm0.67}$	75.00 ± 0.34	$47.60{\scriptstyle\pm0.31}$	$55.15{\scriptstyle\pm0.93}$	$42.93{\scriptstyle\pm1.48}$	$66.05{\scriptstyle\pm0.76}$	
FM ^[3] (one-to-one)	$69.97{\scriptstyle\pm0.24}$	$76.38{\scriptstyle\pm1.18}$	$48.93{\scriptstyle\pm0.40}$	$54.88{\scriptstyle\pm1.24}$	$44.50{\scriptstyle\pm0.96}$	67.25 ± 0.88	Maximum +15%
L2T-w (single)	70.27 ± 0.09	$74.35{\scriptstyle\pm0.92}$	$51.95{\scriptstyle\pm0.83}$	60.41 ± 0.37	$46.25{\scriptstyle\pm3.66}$	69.16±0.70	relative improvements
L2T-w (one-to-one)	$70.02{\scriptstyle\pm0.19}$	$76.42{\scriptstyle\pm0.52}$	$56.61{\scriptstyle\pm0.20}$	$59.78{\scriptstyle\pm1.90}$	$48.19{\scriptstyle\pm1.42}$	$69.84{\scriptstyle\pm1.45}$	
L2T-ww (all-to-all)	$\textbf{70.96} {\scriptstyle \pm 0.61}$	$\textbf{78.31} \scriptstyle{\pm 0.21}$	$65.05{\scriptstyle\pm1.19}$	$64.85{\scriptstyle\pm2.75}$	$63.08 \scriptstyle{\pm 0.88}$	78.08±0.96	

Learning what to transfer (channel importance) improves all the baselines

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR 2017

^[3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In ICLR, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

- Learning what and where to transfer gives consistent improvements
 - Suggested method works well in various tasks and architectures

Source task	TinyIma	ngeNet		In	nageNet		
Target task	CIFAR-100	STL-10	CUB200	MIT67	Stanford40	Stanford Dogs	
Scratch LwF ^[6]	67.69 ± 0.22 69.23 ± 0.09	65.18±0.91 68.64±0.58	42.15 ± 0.75 45.52 ± 0.66	$48.91_{\pm 0.53}$ $53.73_{\pm 2.14}$	36.93 ± 0.68 39.73 ± 1.63	58.08 ± 0.26 66.33 ± 0.45	
AT ^[1] (one-to-one)	$67.54 \scriptstyle{\pm 0.40}$	$74.19{\scriptstyle\pm0.22}$	57.74 ± 1.17	$59.18{\scriptstyle\pm1.57}$	$59.29{\scriptstyle\pm0.91}$	$69.70 \scriptstyle{\pm 0.08}$	
$LwF^{[6]}+AT^{[1]}$ (one-to-one) $FM^{[3]}$ (single)	$68.75 \pm 0.09 \\ 69.40 \pm 0.67$	75.06 ± 0.57 75.00 ± 0.34	58.90 ± 1.32 47.60 ± 0.31	$61.42{\scriptstyle\pm1.68}\atop 55.15{\scriptstyle\pm0.93}$	$\frac{60.20{\pm}_{1.34}}{42.93{\pm}_{1.48}}$	$72.67_{\pm 0.26}$ $66.05_{\pm 0.76}$	
FM ^[3] (one-to-one)	$69.97{\scriptstyle\pm0.24}$	$76.38{\scriptstyle\pm1.18}$	$48.93{\scriptstyle\pm0.40}$	54.88±1.24	44.50 ± 0.96	67.25 ± 0.88	Maximum +15%
L2T-w (single) L2T-w (one-to-one) L2T-ww (all-to-all)	$70.27_{\pm 0.09}$ $70.02_{\pm 0.19}$ 70.96 ± 0.61	$74.35_{\pm 0.92}$ $76.42_{\pm 0.52}$ 78.31 $_{\pm 0.21}$	$51.95_{\pm 0.83}$ $56.61_{\pm 0.20}$ $65.05_{\pm 1.19}$	$60.41_{\pm 0.37}$ $59.78_{\pm 1.90}$ $64.85_{\pm 2.75}$	$46.25_{\pm 3.66}$ $48.19_{\pm 1.42}$ 63.08 $_{\pm 0.88}$	$69.16_{\pm 0.70}$ $69.84_{\pm 1.45}$ $78.08_{\pm 0.96}$	maximum +25%
E21-ww (all-t0-all)	70•20±0.61	7 0.31 ±0.21	U3.U3±1.19	UT.UJ±2./5	UJ•UO±0.88	7 O. OO ± 0.96	relative improvements

- Learning what to transfer (channel importance) improves all the baselines
- Learning where to transfer (pair importance) gives more improvements on what to transfer

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR 2017

^[3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In *ICLR*, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

Multi-source experiments

First source	TinyImageNet (ResNet32)					
Second source	None	TinyImageNet (ResNet20)	TinyImageNet (ResNet32)	CIFAR-10 (ResNet32)		
Scratch	65.18±0.91	65.18 ± 0.91	65.18±0.91	65.18 ± 0.91		
$LwF^{[6]}$	$68.64{\scriptstyle\pm0.58}$	68.56 ± 2.24	68.05 ± 2.12	$69.51 {\scriptstyle\pm0.63}$		
$AT^{[1]}$	$74.19{\scriptstyle\pm0.22}$	73.24 ± 0.12	73.78 ± 1.16	$73.99{\scriptstyle\pm0.51}$		
$LwF^{[6]} + AT^{[1]}$	$75.06{\scriptstyle\pm0.57}$	74.72 ± 0.46	74.77 ± 0.30	$74.41{\scriptstyle\pm1.51}$		
FM ^[3] (single)	$75.00{\scriptstyle\pm0.34}$	75.83 ± 0.56	75.99 ± 0.11	$74.60{\scriptstyle \pm 0.73}$		
FM ^[3] (one-to-one)	$76.38{\scriptstyle\pm1.18}$	$77.45{\scriptstyle\pm0.48}$	$77.69{\scriptstyle\pm0.79}$	$77.15{\scriptstyle\pm0.41}$		
L2T-ww (all-to-all)	78.31±0.21	79.35 _{±0.41}	79.80±0.52	80.52±0.29		

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR 2017

^[3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In ICLR, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

• Multi-source experiments: Different *architectures*

First source	TinyImageNet (ResNet32)						
Second source	None TinyImageNet (ResNet20)		TinyImageNet (ResNet32)	CIFAR-10 (ResNet32)			
Scratch	65.18±0.91	65.18±0.91	65.18±0.91	65.18±0.91			
$LwF^{[6]}$	$68.64{\scriptstyle\pm0.58}$	68.56 ± 2.24	68.05 ± 2.12	69.51 ± 0.63			
$AT^{[1]}$	$74.19{\scriptstyle\pm0.22}$	73.24 ± 0.12	73.78 ± 1.16	$73.99{\scriptstyle\pm0.51}$			
$LwF^{[6]} + AT^{[1]}$	$75.06{\scriptstyle\pm0.57}$	74.72 ± 0.46	74.77 ± 0.30	74.41 ± 1.51			
FM ^[3] (single)	$75.00{\scriptstyle\pm0.34}$	75.83 ± 0.56	$75.99{\scriptstyle\pm0.11}$	$74.60{\scriptstyle \pm 0.73}$			
FM ^[3] (one-to-one)	$76.38{\scriptstyle\pm1.18}$	$77.45_{\pm 0.48}$	$77.69{\scriptstyle\pm0.79}$	$77.15{\scriptstyle\pm0.41}$			
L2T-ww (all-to-all)	78.31±0.21	79.35±0.41	79.80±0.52	80.52±0.29			

+2.45% relative improvements

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR 2017

^[3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In ICLR, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

• Multi-source experiments: Different architectures, initialization

First source	TinyImageNet (ResNet32)						
Second source	None	TinyImageNet (ResNet20)	TinyImageNet (ResNet32)	CIFAR-10 (ResNet32)			
Scratch	65.18±0.91	65.18±0.91	65.18 ± 0.91	65.18 ± 0.91			
$LwF^{[6]}$	$68.64{\scriptstyle\pm0.58}$	68.56 ± 2.24	68.05 ± 2.12	69.51 ± 0.63			
$AT^{[1]}$	$74.19{\scriptstyle\pm0.22}$	$73.24_{\pm 0.12}$	73.78 ± 1.16	$73.99{\scriptstyle\pm0.51}$			
$LwF^{[6]} + AT^{[1]}$	$75.06{\scriptstyle\pm0.57}$	74.72 ± 0.46	74.77 ± 0.30	$74.41{\scriptstyle\pm1.51}$			
FM ^[3] (single)	$75.00{\scriptstyle\pm0.34}$	75.83 ± 0.56	$75.99_{\pm 0.11}$	74.60 ± 0.73			
FM ^[3] (one-to-one)	$76.38{\scriptstyle\pm1.18}$	$77.45_{\pm 0.48}$	$77.69_{\pm 0.79}$	$77.15{\scriptstyle\pm0.41}$			
L2T-ww (all-to-all)	78.31±0.21	79.35±0.41	79.80±0.52	80.52±0.29			

+2.45% relative improvements

+2.72% relative improvements

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR 2017

^[3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In ICLR, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

• Multi-source experiments: Different architectures, initialization and datasets

First source	TinyImageNet (ResNet32)				
Second source	None	TinyImageNet (ResNet20)	TinyImageNet (ResNet32)	CIFAR-10 (ResNet32)	
Scratch	65.18±0.91	65.18±0.91	65.18±0.91	65.18±0.91	
$LwF^{[6]}$	$68.64{\scriptstyle\pm0.58}$	68.56 ± 2.24	68.05 ± 2.12	69.51 ± 0.63	
$AT^{[1]}$	$74.19{\scriptstyle\pm0.22}$	$73.24_{\pm 0.12}$	73.78 ± 1.16	$73.99{\scriptstyle\pm0.51}$	
$LwF^{[6]} + AT^{[1]}$	$75.06{\scriptstyle\pm0.57}$	74.72 ± 0.46	74.77 ± 0.30	$74.41_{\pm 1.51}$	
FM ^[3] (single)	$75.00{\scriptstyle\pm0.34}$	75.83 ± 0.56	$75.99_{\pm 0.11}$	74.60 ± 0.73	
FM ^[3] (one-to-one)	$76.38{\scriptstyle\pm1.18}$	$77.45_{\pm 0.48}$	77.69±0.79	$77.15_{\pm 0.41}$	
L2T-ww (all-to-all)	78.31±0.21	79.35±0.41	79.80±0.52	80.52±0.29	
		+2.45% relativ	/e +2.72% relat	ive +4.37% re	

+2.45% relative improvements

+2.72% relative improvements

+4.37% relative improvements

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR 2017

^[3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In ICLR, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2018.

• Multi-source experiments: Different architectures, initialization and datasets

First source		TinyImageNet (ResNet32)						
Second source	None	TinyImageNet (ResNet20)	TinyImageNet (ResNet32)	CIFAR-10 (ResNet32)				
Scratch	65.18±0.91	65.18±0.91	65.18±0.91	65.18±0.91				
$LwF^{[6]}$	$68.64{\scriptstyle\pm0.58}$	68.56 ± 2.24	68.05 ± 2.12	69.51 ± 0.63				
$AT^{[1]}$	$74.19{\scriptstyle\pm0.22}$	$73.24_{\pm 0.12}$	73.78 ± 1.16	$73.99{\scriptstyle\pm0.51}$				
$LwF^{[6]} + AT^{[1]}$	$75.06{\scriptstyle\pm0.57}$	74.72 ± 0.46	74.77 ± 0.30	74.41 ± 1.51				
FM ^[3] (single)	$75.00{\scriptstyle\pm0.34}$	75.83 ± 0.56	$75.99_{\pm 0.11}$	$74.60{\scriptstyle\pm0.73}$				
FM ^[3] (one-to-one)	$76.38{\scriptstyle\pm1.18}$	$77.45{\scriptstyle\pm0.48}$	77.69 ± 0.79	$77.15{\scriptstyle\pm0.41}$				
L2T-ww (all-to-all)	78.31±0.21	79.35±0.41	79.80±0.52	80.52±0.29				

- Limited data-regime experiments
 - Smaller the volume of the target dataset
 - → More relative gain of ours
 - Ours efficiently boosts up the performance of a target model

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via [3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In *ICLR*, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEETransactions on Pattern Analysis and Machine Intelligence*, 2018.

• Multi-source experiments: Different architectures, initialization and datasets

First source		TinyImageNet (ResNet32)						
Second source	None	TinyImageNet (ResNet20)	TinyImageNet (ResNet32)	CIFAR-10 (ResNet32)				
Scratch	65.18±0.91	65.18±0.91	65.18±0.91	65.18±0.91				
$LwF^{[6]}$	$68.64{\scriptstyle\pm0.58}$	68.56 ± 2.24	68.05 ± 2.12	69.51 ± 0.63				
$AT^{[1]}$	$74.19{\scriptstyle\pm0.22}$	$73.24_{\pm 0.12}$	73.78 ± 1.16	$73.99{\scriptstyle\pm0.51}$				
$LwF^{[6]} + AT^{[1]}$	$75.06{\scriptstyle\pm0.57}$	74.72 ± 0.46	74.77 ± 0.30	74.41 ± 1.51				
FM ^[3] (single)	$75.00{\scriptstyle\pm0.34}$	75.83 ± 0.56	$75.99_{\pm0.11}$	$74.60{\scriptstyle\pm0.73}$				
FM ^[3] (one-to-one)	$76.38{\scriptstyle\pm1.18}$	$77.45{\scriptstyle\pm0.48}$	77.69 ± 0.79	$77.15{\scriptstyle\pm0.41}$				
L2T-ww (all-to-all)	78.31±0.21	79.35±0.41	79.80±0.52	80.52±0.29				

- Limited data-regime experiments
 - Smaller the volume of the target dataset
 - → More relative gain of ours
 - Ours efficiently boosts up the performance of a target model

^[1] Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance of convolutional neural networks via [3] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin deep nets. In *ICLR*, 2015.

^[6] Li, Z. and Hoiem, D. Learning without forgetting. *IEEETransactions on Pattern Analysis and Machine Intelligence*, 2018.

Conclusion

- Meta-learning based transfer method
 - Selective transfer depending on a source and target task relation
 - Effective training scheme that learns meta-networks and target model jointly
 - Applicable between heterogeneous or/and multiple network architectures and tasks

Poster #186 Thursday Jun 13th 6:30 – 9:00 PM (a) Pacific Ballroom