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List Processing from IO:

[1, 2, 3, 4, 5] → [2, 4]
[7, 8, 0, 9] → [8, 0] 

Natural language + IO → code

“Consider an array of numbers, 
find elements in the given array 
not divisible by two”
[1, 2, 3, 4, 5] → [1, 3, 5]
[7, 8, 0, 9] → [7, 9]

Text Editing from IO:

Max Nye → Nye, M.
Luke Hewitt → Hewitt, L.

Goal: We want to automatically write code from the kinds of specifications 
humans can easily provide, such as examples or natural language instruction.
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How might people solve problems like this?

Goal: Write a program 
which maps inputs to 
outputs 

Given:
[1, 2, 3, 4, 5] → [2, 4] 
[0, 6, 2, 7] → [0, 6, 2]
[5, 10, 5, 1, 8] → [10, 8]
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Given:
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People use a flexible trade-off between pattern recognition and 
reasoning
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More difficult problem:

Spec: 
[3, 4, 5, 6, 7] → [4, 7] 
[10, 8, 7, 3, 2, 1] → [10, 7, 1]
[5, 1, 2, 13, 4] → [1, 13, 4]
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Very difficult problem:

Spec: 
[2, 5, 0, 16, 12] → 0
[4, 23, 11, 9, 25] → 25
[3, 29, 30, 14, 16] → 14
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Very difficult problem:

Spec: 
[2, 5, 0, 16, 12] → 0
[4, 23, 11, 9, 25] → 25
[3, 29, 30, 14, 16] → 14
[1, 7, 6, 9, 5] → 7
[5, 5, 1, 8, 8, 12, 4] → 12
[0, 4, 8, 5, 1] → 0
[3, 7, 2, 9, 1] → 9
[1, 0, 3, 7, 3, 8] → 0
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Very difficult problem:

Spec: 
[2, 5, 0, 16, 12] → 0
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Solution:
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<SOMETHING>

(Slow)

input[input[0]]
Symbolic reasoning



Pattern 
recognition

(program specification) Program sketch 

Full program 

Symbolic 
reasoning

Q: How do we model this? A: Program sketches

Solar-Lezama et al, 2008,
Murali et al, 2017

filter(<HOLE>,
input)

filter(
lambda x: 
x%3==1,
input)

[3, 4, 5, 6, 7]
→ [4, 7] 
[10, 8, 7, 3, 2, 1] 
→ [10, 7, 1]

Flexible trade-off between pattern recognition and reasoning

(e.g., guess and check)(e.g., neural network)



Our system: SketchAdapt
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filter(<HOLE>, input) filter(lambda x: 
x%3==1, input)

[3, 4, 5, 6, 7] → [4, 7] 
[10, 8, 7, 1] → [10, 7, 1]
[5, 1, 13, 4] → [1, 13, 4]

Neural 
recognizer

.25 .05 .02 .03 .25 .30

Production probabilities
...

Learned neural network
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Sketch generator:
RNN that proposes 
program sketches

(c.f. RobustFill)
Devlin et al, 2017
Balog et al, 2016
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Learned neural network

Symbolic synthesizer:
enumerator that fills in 

sketches, guided by 
neural recognizer
(c.f DeepCoder)

Sketch generator:
RNN that proposes 
program sketches

(c.f. RobustFill)
Devlin et al, 2017
Balog et al, 2016
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List Processing: length 3 test programs

SketchAdapt (ours)
Synthesizer only (Deepcoder)
Generator only (RobustFill)

Results: list processing
SketchAdapt can recognize familiar problems and generalize to unfamiliar 
problems

Ours
Pattern recognition only (neural network)
Reasoning only (symbolic enumeration)

Trained on length 3 programs

Length 3 test programs:SketchAdapt
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Natural language + IO examples → Code
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Natural language + IO examples → Code

Requires less data than pure neural approaches:

SketchAdapt
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Natural language + IO examples → Code

Requires less data than pure neural approaches: Generalizes to unseen concepts:

SketchAdapt



Come see our poster: 
Today (Thurs) 06:30 - 09:00 PM @ Pacific Ballroom #182
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Count >0 (Map +1 input) Count >0 (Map (HOLE))  

[1, 3, -4, 3]-> 3 
[-3, 0, 2, -1]-> 2 

[7,-4,-5, 2]-> 2 
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