Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Goal: We want to automatically write code from the kinds of specifications
humans can easily provide, such as examples or natural language instruction.

List Processing from 10: Text Editing from |O: Natural language + 10 = code
[1, 2, 3, 4, 5] » [2, 4] Max Nye - Nye, M. “Consider an array of numbers,
[7, 8, @, 9] = [8, 0] Luke Hewitt - Hewitt, L. find elements in the given array

not divisible by two”
[1, 2, 3, 4, 5] » [1, 3, 5]
[7, 8, @, 9] » [7, 9]

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Given: Goal: Write a program

[1, 2, 3, 4, 5] » [2, 4] which maps inputs to
[@J 61 2: 7] - [e.’ 6) 2] OutputS
[5, 10, 5, 1, 8] » [1@, 8]

How might people solve problems like this?

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Given: Goal: Write a program
[1, 2, 3, 4, 5] » [2, 4] which maps inputs to
[@J 6: 2: 7] - [9) 6: 2] OutputS

[5, 1@, 5, 1, 8] » [10, 8]

How might people solve problems like this?

People use a flexible trade-off between pattern recognition and
reasoning

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama
Easy problem:
Spec:
[1) 2.’ 3) 4.’ 5] g [ZJ 4]

[0, 6, 2, 7] » [0, 6, 2]
[5, 10, 5, 1, 8] > [10, 8]

Solution:

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Easy problem:

Spec:

[1J 2) 3) 4) 5] - [2) 4]
[0, 6, 2, 7] » [0, 6, 2]
[5, 10, 5, 1, 8] » [10, 8]

Solution:

filter(lambda x: x%2==0, input)

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama
Easy problem:
Spec:
[1J 2.’ 3) 4.’ 5] g [2J 4]

[0, 6, 2, 7] » [0, 6, 2]
[5, 10, 5, 1, 8] > [10, 8]

Solution:

filter(lambda x: x%2==0, input)

Fast, using pattern recognition

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama
More difficult problem:
Spec:
[3, 4, 5, 6, 7] » [4, 7]

[10, 8, 7, 3, 2, 1] » [10, 7, 1]
[5, 1, 2, 13, 4] » [1, 13, 4]

Solution:

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama
More difficult problem:
Spec:
[3, 4, 5, 6, 7] » [4, 7]

[10, 8, 7, 3, 2, 1] » [10, 7, 1]
[5, 1, 2, 13, 4] » [1, 13, 4]

Solution:

filter(<SOMETHING>, input)

(Fast, using pattern recognition)

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama
More difficult problem:
Spec:
[3, 4, 5, 6, 7] » [4, 7]

[10, 8, 7, 3, 2, 1] » [10, 7, 1]
[5, 1, 2, 13, 4] » [1, 13, 4]

Solution:

filter(<SOMETHING>, input) ‘ filter(lambda x: x%3==1,
Symbolic reasoning input)

(Fast, using pattern recognition)

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama
More difficult problem:
Spec:
[3, 4, 5, 6, 7] » [4, 7]

[10, 8, 7, 3, 2, 1] » [10, 7, 1]
[5, 1, 2, 13, 4] » [1, 13, 4]

Solution:

filter(<SOMETHING>, input) ‘ filter(lambda x: x%3==1,
Symbolic reasoning input)

(Fast, using pattern recognition) (Slow)

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Very difficult problem:

Spec:

[2, 5, O, 16, 12] » ©
[4, 23, 11, 9, 25] -» 25
[3, 29, 30, 14, 16] » 14

Learning to Infer Program Sketches

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Very difficult problem:

Spec:
5, 0, 16, 12] » ©
23, 11, 9, 25] » 25
29, 30, 14, 16] » 14
6, 9, 5]
8,

[2,
[4,

[3,

[1, 7

[5,
[0,
[3,
[1,

J

J

© N b wu
v e

-

w N 0 B

)

J

)

)

5
9
7

J

-

J

8,
1]
1]
3,

- 7
12, 4] » 12
- 0
- 9
8] - ©

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama
Very difficult problem:
Spec:
[2, 5, 0, 16, 12] » ©

[4, 23, 11, 9, 25] > 25
[3, 29, 30, 14, 16] > 14

Solution:

<SOMETHING>) input[input[0]]

Symbolic reasoning

(Slow)

Q: How do we model this? A: Program sketches

[3, 4, 5, 6, 7]) filter(
Pattern | _ 'F1:|_'tEI"(<HQLE>,_> Symbolic | lambda x:

> [4, 7] "
[10, 8, 7, 3, 2, 1] recognition . reasoning
5 [10, 7, 1] input) X%3==1,

(e.g., neural network) (e.g., guess and check)

input)

__

Program sketch

(program specification)

Full program

Flexible trade-off between pattern recognition and reasoning

Solar-Lezama et al, 2008,
Murali et al, 2017

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Our system: SketchAdapt

® L
O X
— Learned neural network / } \?’Q ‘70< éz;‘- 6\,& B
Neural 05 > Emmm o o J
» . Production probabilities
> recognizer /
[3, 4, 5, 6, 7] » [4, 7] Neural : »
[10, 8, 7, 1] » [10, 7, 1] —» sketch —» filter(<HOLE>, input) > Symbolic > filter(lambda x:
[5, 1, 13, 4] » [1, 13, 4] generator enumerator x%3==1, input)

Program specification Program sketch Full program

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Our system: SketchAdapt

® L
O X
— Learned neural network / } \?’Q ‘70< Q,Z;\- 6\,& B
Neural 05 > Emmm o o J
» . Production probabilities
> recognizer /
[3, 4, 5, 6, 7] » [4, 7] Neural : »
[10, 8, 7, 1] » [10, 7, 1] —» sketch —» filter(<HOLE>, input) > Symbolic > filter(lambda x:
[5, 1, 13, 4] » [1, 13, 4] generator enumerator x%3==1, input)

Program specification Program sketch Full program

Sketch generator:
RNN that proposes
program sketches

(c.f. RobustFill))
Devlin et al, 2017
Balog et al, 2016

Learning to Infer Program Sketches |||||-

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Our system: SketchAdapt

® L
L d | network A
_ earned neural hetwor! / E \? ‘70 Q’b ‘7\5 °\° ”
0 EmE o o
Neural)
» . Production probabilities
P> recognizer /
[3, 4, 5, 6, 7] » [4, 7] Neural : »
[10, 8, 7, 1] » [10, 7, 1] —» sketch —» filter(<HOLE>, input) > Symbolic > filter(lambda x:
[5, 1, 13, 4] » [1, 13, 4] generator enumerator x%3==1, input)
Program specification Program sketch Full program
Sketch generator: Symbolic synthesizer:
RNN that proposes enumerator that fills in
program sketches sketches, guided by
(c.f. RobustFill) neural recognizer

Devlin et al, 2017
(c.f DeepCoder) Balog et al, 2016

Ours
— — = Pattern recognition only (neural network)

R esu ItS: I iSt p ro CeSSi N g — . —. Reasoning only (symbolic enumeration)

SketchAdapt can recognize familiar problems and generalize to unfamiliar
problems

Trained on length 3 programs

SketchAdapt | ength 3 test programs:

o
(0]
=
o
(7]
(7]
IS
K}
o
o
—_
Q
Y—
S}
X 201 /) —— SketchAdapt (ours)
_,./ — = Synthesizer only (Deepcoder)
0. —_ —=—- Generator only (RobustFill)
10! 10° 10° 10 10°

Number of candidates evaluated per problem

Ours
= = = Pattern recognition only (neural network)

R esu ItS: I iSt p ro CeSSi N g — . —. Reasoning only (symbolic enumeration)

SketchAdapt can recognize familiar problems and generalize to unfamiliar
problems

Trained on length 3 programs

SketchAdapt | ength 3 test programs: Length 4 test programs:
—— SketchAdapt (ours)
504 —" Synthesizer only (Deepcoder)
8 8 === Generator only (RobustFill) /
> > ; SketchAdapt
o o 40 -
0 n /
. 2 j
§ § 30, ./
: : ‘
[o% & 201
Y— Y—
o o
xR 207 /' — SketchAdapt (ours) b O e
_’./ —-= Synthesizer only (Deepcoder)
0- —_ ——- Generator only (RobustFill) 01
101 102 103 104 10 10t 10? 103 104 10

Number of candidates evaluated per problem Number of candidates evaluated per problem

Natural language + |10 examples > Code

Spec Program
Consider an array of numbers, (filter a (lambdal (== (
find elements in the given array not divisible by two % argl 2) 1)))
You are given an array of numbers, (reduce (reverse (digits (deref (sort a)
your task is to compute median (/ (len a) 2)))) O

in the given array with its digits reversed (lambda2 (+(* argl 10) arg2)))

Natural language + |10 examples - Code

Requires less data than pure neural approaches:

Algolisp

100
I Our model

I Generator only (RobustFill)
801 mmm Synthesizer only (Deepcoder)

60 1

401 _ SketchAdapt

201

% of test programs solved

2000 4000 6000 8000 79214
(full dataset)

Number of training programs used

Natural language + |10 examples - Code

Requires less data than pure neural approaches: Generalizes to unseen concepts:
Algolisp
100 Table 5. Algolisp generalization results: Trained on 8000 pro-
2 J= Our model) grams, excluding ‘Odd’ concept:
S I Generator only (RobustFill)
S 801 mmm Synthesizer only (Deepcoder) Model Even Odd
o SKETCHADAPT (Ours) 34.4 29.8
€ 60 Synthesizer only 237 0.0
§, Generator only 4.5 1.1
S 401
g v 4 SketchAdapt
3
5 201
X

2000 4000 6000 8000 79214
(full dataset)

Number of training programs used

Learning to Infer Program Sketches

Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Come see our poster:
Today (Thurs) 06:30 - 09:00 PM @ Pacific Ballroom #182

—— Learned neural network

-~

Recognizer, |[——q

(1,

7,

1
(-3
[7,-4,

Program spec, X

Neural sketch
generator,

G (=[%)

I V

—» Count >0 (Map (HOLE))

Program sketch, s

ry (X, 8)

L~

SIS

$
AR S S

=N - Ep

Production probabilities, 8

A/
» Enumerator

\J _/

Program synthesizer

» Count >0

Full program, F'

(Map +1 input)

