
Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

List Processing from IO:

[1, 2, 3, 4, 5] → [2, 4]
[7, 8, 0, 9] → [8, 0]

Natural language + IO → code

“Consider an array of numbers,
find elements in the given array
not divisible by two”
[1, 2, 3, 4, 5] → [1, 3, 5]
[7, 8, 0, 9] → [7, 9]

Text Editing from IO:

Max Nye → Nye, M.
Luke Hewitt → Hewitt, L.

Goal: We want to automatically write code from the kinds of specifications
humans can easily provide, such as examples or natural language instruction.

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

How might people solve problems like this?

Goal: Write a program
which maps inputs to
outputs

Given:
[1, 2, 3, 4, 5] → [2, 4]
[0, 6, 2, 7] → [0, 6, 2]
[5, 10, 5, 1, 8] → [10, 8]

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

How might people solve problems like this?

Goal: Write a program
which maps inputs to
outputs

Given:
[1, 2, 3, 4, 5] → [2, 4]
[0, 6, 2, 7] → [0, 6, 2]
[5, 10, 5, 1, 8] → [10, 8]

People use a flexible trade-off between pattern recognition and
reasoning

Easy problem:

Spec:
[1, 2, 3, 4, 5] → [2, 4]
[0, 6, 2, 7] → [0, 6, 2]
[5, 10, 5, 1, 8] → [10, 8]

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Easy problem:

Spec:
[1, 2, 3, 4, 5] → [2, 4]
[0, 6, 2, 7] → [0, 6, 2]
[5, 10, 5, 1, 8] → [10, 8]

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

filter(lambda x: x%2==0, input)

Easy problem:

Spec:
[1, 2, 3, 4, 5] → [2, 4]
[0, 6, 2, 7] → [0, 6, 2]
[5, 10, 5, 1, 8] → [10, 8]

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

filter(lambda x: x%2==0, input)

Fast, using pattern recognition

More difficult problem:

Spec:
[3, 4, 5, 6, 7] → [4, 7]
[10, 8, 7, 3, 2, 1] → [10, 7, 1]
[5, 1, 2, 13, 4] → [1, 13, 4]

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

More difficult problem:

Spec:
[3, 4, 5, 6, 7] → [4, 7]
[10, 8, 7, 3, 2, 1] → [10, 7, 1]
[5, 1, 2, 13, 4] → [1, 13, 4]

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

(Fast, using pattern recognition)

filter(<SOMETHING>, input)

More difficult problem:

Spec:
[3, 4, 5, 6, 7] → [4, 7]
[10, 8, 7, 3, 2, 1] → [10, 7, 1]
[5, 1, 2, 13, 4] → [1, 13, 4]

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

(Fast, using pattern recognition)

filter(<SOMETHING>, input) filter(lambda x: x%3==1,
input)Symbolic reasoning

More difficult problem:

Spec:
[3, 4, 5, 6, 7] → [4, 7]
[10, 8, 7, 3, 2, 1] → [10, 7, 1]
[5, 1, 2, 13, 4] → [1, 13, 4]

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

(Fast, using pattern recognition)

filter(<SOMETHING>, input)

(Slow)

filter(lambda x: x%3==1,
input)Symbolic reasoning

Very difficult problem:

Spec:
[2, 5, 0, 16, 12] → 0
[4, 23, 11, 9, 25] → 25
[3, 29, 30, 14, 16] → 14

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Very difficult problem:

Spec:
[2, 5, 0, 16, 12] → 0
[4, 23, 11, 9, 25] → 25
[3, 29, 30, 14, 16] → 14
[1, 7, 6, 9, 5] → 7
[5, 5, 1, 8, 8, 12, 4] → 12
[0, 4, 8, 5, 1] → 0
[3, 7, 2, 9, 1] → 9
[1, 0, 3, 7, 3, 8] → 0

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Very difficult problem:

Spec:
[2, 5, 0, 16, 12] → 0
[4, 23, 11, 9, 25] → 25
[3, 29, 30, 14, 16] → 14

Solution:

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

<SOMETHING>

(Slow)

input[input[0]]
Symbolic reasoning

Pattern
recognition

(program specification) Program sketch

Full program

Symbolic
reasoning

Q: How do we model this? A: Program sketches

Solar-Lezama et al, 2008,
Murali et al, 2017

filter(<HOLE>,
input)

filter(
lambda x:
x%3==1,
input)

[3, 4, 5, 6, 7]
→ [4, 7]
[10, 8, 7, 3, 2, 1]
→ [10, 7, 1]

Flexible trade-off between pattern recognition and reasoning

(e.g., guess and check)(e.g., neural network)

Our system: SketchAdapt

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Neural
sketch

generator

Program specification Program sketch Full program

Symbolic
enumerator

filter(<HOLE>, input) filter(lambda x:
x%3==1, input)

[3, 4, 5, 6, 7] → [4, 7]
[10, 8, 7, 1] → [10, 7, 1]
[5, 1, 13, 4] → [1, 13, 4]

Neural
recognizer

.25 .05 .02 .03 .25 .30

Production probabilities
...

Learned neural network

Our system: SketchAdapt

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Neural
sketch

generator

Program specification Program sketch Full program

Symbolic
enumerator

filter(<HOLE>, input) filter(lambda x:
x%3==1, input)

[3, 4, 5, 6, 7] → [4, 7]
[10, 8, 7, 1] → [10, 7, 1]
[5, 1, 13, 4] → [1, 13, 4]

Neural
recognizer

.25 .05 .02 .03 .25 .30

Production probabilities
...

Learned neural network

Sketch generator:
RNN that proposes
program sketches

(c.f. RobustFill)
Devlin et al, 2017
Balog et al, 2016

Our system: SketchAdapt

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Neural
sketch

generator

Program specification Program sketch Full program

Symbolic
enumerator

filter(<HOLE>, input) filter(lambda x:
x%3==1, input)

[3, 4, 5, 6, 7] → [4, 7]
[10, 8, 7, 1] → [10, 7, 1]
[5, 1, 13, 4] → [1, 13, 4]

Neural
recognizer

.25 .05 .02 .03 .25 .30

Production probabilities
...

Learned neural network

Symbolic synthesizer:
enumerator that fills in

sketches, guided by
neural recognizer
(c.f DeepCoder)

Sketch generator:
RNN that proposes
program sketches

(c.f. RobustFill)
Devlin et al, 2017
Balog et al, 2016

101 102 103 104 105

Number of candidates evaluated per problem

0

20

40

60

80

100

%
 o

f
p
ro

b
le

m
s

so
lv

ed

List Processing: length 3 test programs

SketchAdapt (ours)
Synthesizer only (Deepcoder)
Generator only (RobustFill)

Results: list processing
SketchAdapt can recognize familiar problems and generalize to unfamiliar
problems

Ours
Pattern recognition only (neural network)
Reasoning only (symbolic enumeration)

Trained on length 3 programs

Length 3 test programs:SketchAdapt

101 102 103 104 105

Number of candidates evaluated per problem

0

10

20

30

40

50

%
 o

f p
ro

bl
em

s
so

lv
ed

List Processing: length 4 test programs

SketchAdapt (ours)
Synthesizer only (Deepcoder)
Generator only (RobustFill)

101 102 103 104 105

Number of candidates evaluated per problem

0

20

40

60

80

100

%
 o

f
p
ro

b
le

m
s

so
lv

ed

List Processing: length 3 test programs

SketchAdapt (ours)
Synthesizer only (Deepcoder)
Generator only (RobustFill)

Results: list processing
SketchAdapt can recognize familiar problems and generalize to unfamiliar
problems

Ours
Pattern recognition only (neural network)
Reasoning only (symbolic enumeration)

Length 3 test programs: Length 4 test programs:

Trained on length 3 programs

SketchAdapt

SketchAdapt

Natural language + IO examples → Code

2000 4000 6000 8000 79214
(fuOO GDtDset)

1umber Rf trDining SrRgrDms useG

0

20

40

60

80

100

%
 R

f t
es

t S
rR

gr
Dm

s
sR

Ov
eG

AOgROisS

2ur mRGeO
GenerDtRr RnOy (RRbust)iOO)
6ynthesizer RnOy (DeeSFRGer)

Natural language + IO examples → Code

Requires less data than pure neural approaches:

SketchAdapt

2000 4000 6000 8000 79214
(fuOO GDtDset)

1umber Rf trDining SrRgrDms useG

0

20

40

60

80

100

%
 R

f t
es

t S
rR

gr
Dm

s
sR

Ov
eG

AOgROisS

2ur mRGeO
GenerDtRr RnOy (RRbust)iOO)
6ynthesizer RnOy (DeeSFRGer)

Natural language + IO examples → Code

Requires less data than pure neural approaches: Generalizes to unseen concepts:

SketchAdapt

Come see our poster:
Today (Thurs) 06:30 - 09:00 PM @ Pacific Ballroom #182

Learning to Infer Program Sketches
Maxwell Nye, Luke Hewitt, Josh Tenenbaum, Armando Solar-Lezama

Count >0 (Map +1 input) Count >0 (Map (HOLE))

[1, 3, -4, 3]-> 3
[-3, 0, 2, -1]-> 2

[7,-4,-5, 2]-> 2

.25 .03 .02 .06 .40 .05

he
ad

ta
il

+1

-1

in
pu
t

su
m

...

